Functors.h 35.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_FUNCTORS_H
#define EIGEN_FUNCTORS_H

namespace internal {

// associative functors:

/** \internal
  * \brief Template functor to compute the sum of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
  */
template<typename Scalar> struct scalar_sum_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::padd(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return internal::predux(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sum_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasAdd
  };
};

/** \internal
  * \brief Template functor to compute the product of two scalars
  *
  * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
  */
template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
  enum {
    // TODO vectorize mixed product
    Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
  };
  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
  EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::pmul(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
  { return internal::predux_mul(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
  enum {
    Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
    PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
  };
};

/** \internal
  * \brief Template functor to compute the conjugate product of two scalars
  *
  * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
  */
template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {

  enum {
    Conj = NumTraits<LhsScalar>::IsComplex
  };
  
  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
  
  EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
  { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
  
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
  enum {
    Cost = NumTraits<LhsScalar>::MulCost,
    PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
  };
};

/** \internal
  * \brief Template functor to compute the min of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
  */
template<typename Scalar> struct scalar_min_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return min(a, b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::pmin(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return internal::predux_min(a); }
};
template<typename Scalar>
struct functor_traits<scalar_min_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasMin
  };
};

/** \internal
  * \brief Template functor to compute the max of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
  */
template<typename Scalar> struct scalar_max_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return max(a, b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::pmax(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return internal::predux_max(a); }
};
template<typename Scalar>
struct functor_traits<scalar_max_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasMax
  };
};

/** \internal
  * \brief Template functor to compute the hypot of two scalars
  *
  * \sa MatrixBase::stableNorm(), class Redux
  */
template<typename Scalar> struct scalar_hypot_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
//   typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
  {
    using std::max;
    using std::min;
    Scalar p = max(_x, _y);
    Scalar q = min(_x, _y);
    Scalar qp = q/p;
    return p * sqrt(Scalar(1) + qp*qp);
  }
};
template<typename Scalar>
struct functor_traits<scalar_hypot_op<Scalar> > {
  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
};

// other binary functors:

/** \internal
  * \brief Template functor to compute the difference of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::operator-
  */
template<typename Scalar> struct scalar_difference_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::psub(a,b); }
};
template<typename Scalar>
struct functor_traits<scalar_difference_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasSub
  };
};

/** \internal
  * \brief Template functor to compute the quotient of two scalars
  *
  * \sa class CwiseBinaryOp, Cwise::operator/()
  */
template<typename Scalar> struct scalar_quotient_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return internal::pdiv(a,b); }
};
template<typename Scalar>
struct functor_traits<scalar_quotient_op<Scalar> > {
  enum {
    Cost = 2 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasDiv
  };
};

// unary functors:

/** \internal
  * \brief Template functor to compute the opposite of a scalar
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator-
  */
template<typename Scalar> struct scalar_opposite_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasNegate };
};

/** \internal
  * \brief Template functor to compute the absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs
  */
template<typename Scalar> struct scalar_abs_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasAbs
  };
};

/** \internal
  * \brief Template functor to compute the squared absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs2
  */
template<typename Scalar> struct scalar_abs2_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return abs2(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };

/** \internal
  * \brief Template functor to compute the conjugate of a complex value
  *
  * \sa class CwiseUnaryOp, MatrixBase::conjugate()
  */
template<typename Scalar> struct scalar_conjugate_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return conj(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
    PacketAccess = packet_traits<Scalar>::HasConj
  };
};

/** \internal
  * \brief Template functor to cast a scalar to another type
  *
  * \sa class CwiseUnaryOp, MatrixBase::cast()
  */
template<typename Scalar, typename NewType>
struct scalar_cast_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
  typedef NewType result_type;
  EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct scalar_real_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct scalar_imag_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct scalar_real_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct scalar_imag_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  *
  * \brief Template functor to compute the exponential of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::exp()
  */
template<typename Scalar> struct scalar_exp_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
  inline const Scalar operator() (const Scalar& a) const { return exp(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template<typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };

/** \internal
  *
  * \brief Template functor to compute the logarithm of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::log()
  */
template<typename Scalar> struct scalar_log_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
  inline const Scalar operator() (const Scalar& a) const { return log(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template<typename Scalar>
struct functor_traits<scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };

/** \internal
  * \brief Template functor to multiply a scalar by a fixed other one
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
  */
/* NOTE why doing the pset1() in packetOp *is* an optimization ?
 * indeed it seems better to declare m_other as a Packet and do the pset1() once
 * in the constructor. However, in practice:
 *  - GCC does not like m_other as a Packet and generate a load every time it needs it
 *  - on the other hand GCC is able to moves the pset1() away the loop :)
 *  - simpler code ;)
 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
 */
template<typename Scalar>
struct scalar_multiple_op {
  typedef typename packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pmul(a, pset1<Packet>(m_other)); }
  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct functor_traits<scalar_multiple_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

template<typename Scalar1, typename Scalar2>
struct scalar_multiple2_op {
  typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
  EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
  EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
  typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
};
template<typename Scalar1,typename Scalar2>
struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };

template<typename Scalar, bool IsInteger>
struct scalar_quotient1_impl {
  typedef typename packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pmul(a, pset1<Packet>(m_other)); }
  const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,false> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

template<typename Scalar>
struct scalar_quotient1_impl<Scalar,true> {
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,true> >
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to divide a scalar by a fixed other one
  *
  * This functor is used to implement the quotient of a matrix by
  * a scalar where the scalar type is not necessarily a floating point type.
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator/
  */
template<typename Scalar>
struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
  EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other)
    : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_op<Scalar> >
: functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
{};

// nullary functors

template<typename Scalar>
struct scalar_constant_op {
  typedef typename packet_traits<Scalar>::type Packet;
  EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
  const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_constant_op<Scalar> >
// FIXME replace this packet test by a safe one
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };

template<typename Scalar> struct scalar_identity_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct functor_traits<scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };

template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;

// linear access for packet ops:
// 1) initialization
//   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
// 2) each step
//   base += [size*step, ..., size*step]
template <typename Scalar>
struct linspaced_op_impl<Scalar,false>
{
  typedef typename packet_traits<Scalar>::type Packet;

  linspaced_op_impl(Scalar low, Scalar step) :
  m_low(low), m_step(step),
  m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
  m_base(padd(pset1<Packet>(low),pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_packetStep;
  mutable Packet m_base;
};

// random access for packet ops:
// 1) each step
//   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
template <typename Scalar>
struct linspaced_op_impl<Scalar,true>
{
  typedef typename packet_traits<Scalar>::type Packet;

  linspaced_op_impl(Scalar low, Scalar step) :
  m_low(low), m_step(step),
  m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }

  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
  { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_lowPacket;
  const Packet m_stepPacket;
  const Packet m_interPacket;
};

// ----- Linspace functor ----------------------------------------------------------------

// Forward declaration (we default to random access which does not really give
// us a speed gain when using packet access but it allows to use the functor in
// nested expressions).
template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
template <typename Scalar, bool RandomAccess> struct linspaced_op
{
  typedef typename packet_traits<Scalar>::type Packet;
  linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 
  {
    eigen_assert(col==0 || row==0);
    return impl(col + row);
  }

  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
  {
    eigen_assert(col==0 || row==0);
    return impl.packetOp(col + row);
  }

  // This proxy object handles the actual required temporaries, the different
  // implementations (random vs. sequential access) as well as the
  // correct piping to size 2/4 packet operations.
  const linspaced_op_impl<Scalar,RandomAccess> impl;
};

// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// scalar_identity_op.
// FIXME move this to functor_traits adding a functor_default
template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };

// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
// FIXME move this to functor_traits adding a functor_default
template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };


/** \internal
  * \brief Template functor to add a scalar to a fixed other one
  * \sa class CwiseUnaryOp, Array::operator+
  */
/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
template<typename Scalar>
struct scalar_add_op {
  typedef typename packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
  inline scalar_add_op(const Scalar& other) : m_other(other) { }
  inline Scalar operator() (const Scalar& a) const { return a + m_other; }
  inline const Packet packetOp(const Packet& a) const
  { return internal::padd(a, pset1<Packet>(m_other)); }
  const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_add_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };

/** \internal
  * \brief Template functor to compute the square root of a scalar
  * \sa class CwiseUnaryOp, Cwise::sqrt()
  */
template<typename Scalar> struct scalar_sqrt_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
  inline const Scalar operator() (const Scalar& a) const { return sqrt(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> >
{ enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasSqrt
  };
};

/** \internal
  * \brief Template functor to compute the cosine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::cos()
  */
template<typename Scalar> struct scalar_cos_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
  inline Scalar operator() (const Scalar& a) const { return cos(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasCos
  };
};

/** \internal
  * \brief Template functor to compute the sine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::sin()
  */
template<typename Scalar> struct scalar_sin_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
  inline const Scalar operator() (const Scalar& a) const { return sin(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasSin
  };
};


/** \internal
  * \brief Template functor to compute the tan of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::tan()
  */
template<typename Scalar> struct scalar_tan_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
  inline const Scalar operator() (const Scalar& a) const { return tan(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasTan
  };
};

/** \internal
  * \brief Template functor to compute the arc cosine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::acos()
  */
template<typename Scalar> struct scalar_acos_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
  inline const Scalar operator() (const Scalar& a) const { return acos(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasACos
  };
};

/** \internal
  * \brief Template functor to compute the arc sine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::asin()
  */
template<typename Scalar> struct scalar_asin_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
  inline const Scalar operator() (const Scalar& a) const { return asin(a); }
  typedef typename packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasASin
  };
};

/** \internal
  * \brief Template functor to raise a scalar to a power
  * \sa class CwiseUnaryOp, Cwise::pow
  */
template<typename Scalar>
struct scalar_pow_op {
  // FIXME default copy constructors seems bugged with std::complex<>
  inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
  inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
  inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
  const Scalar m_exponent;
};
template<typename Scalar>
struct functor_traits<scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to compute the inverse of a scalar
  * \sa class CwiseUnaryOp, Cwise::inverse()
  */
template<typename Scalar>
struct scalar_inverse_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
  inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };

/** \internal
  * \brief Template functor to compute the square of a scalar
  * \sa class CwiseUnaryOp, Cwise::square()
  */
template<typename Scalar>
struct scalar_square_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
  inline Scalar operator() (const Scalar& a) const { return a*a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

/** \internal
  * \brief Template functor to compute the cube of a scalar
  * \sa class CwiseUnaryOp, Cwise::cube()
  */
template<typename Scalar>
struct scalar_cube_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
  inline Scalar operator() (const Scalar& a) const { return a*a*a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

// default functor traits for STL functors:

template<typename T>
struct functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::binder2nd<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::binder1st<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };

#ifdef EIGEN_STDEXT_SUPPORT

template<typename T0,typename T1>
struct functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };

template<typename T0,typename T1,typename T2>
struct functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };

#endif // EIGEN_STDEXT_SUPPORT

// allow to add new functors and specializations of functor_traits from outside Eigen.
// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif

} // end namespace internal

#endif // EIGEN_FUNCTORS_H