SelfCwiseBinaryOp.h 7.54 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SELFCWISEBINARYOP_H
#define EIGEN_SELFCWISEBINARYOP_H

/** \class SelfCwiseBinaryOp
  * \ingroup Core_Module
  *
  * \internal
  *
  * \brief Internal helper class for optimizing operators like +=, -=
  *
  * This is a pseudo expression class re-implementing the copyCoeff/copyPacket
  * method to directly performs a +=/-= operations in an optimal way. In particular,
  * this allows to make sure that the input/output data are loaded only once using
  * aligned packet loads.
  *
  * \sa class SwapWrapper for a similar trick.
  */

namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
  : traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
{
  enum {
    // Note that it is still a good idea to preserve the DirectAccessBit
    // so that assign can correctly align the data.
    Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
    OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
    InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
  };
};
}

template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
  : public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
  public:

    typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)

    typedef typename internal::packet_traits<Scalar>::type Packet;

    inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    inline Index outerStride() const { return m_matrix.outerStride(); }
    inline Index innerStride() const { return m_matrix.innerStride(); }
    inline const Scalar* data() const { return m_matrix.data(); }

    // note that this function is needed by assign to correctly align loads/stores
    // TODO make Assign use .data()
    inline Scalar& coeffRef(Index row, Index col)
    {
      EIGEN_STATIC_ASSERT_LVALUE(Lhs)
      return m_matrix.const_cast_derived().coeffRef(row, col);
    }
    inline const Scalar& coeffRef(Index row, Index col) const
    {
      return m_matrix.coeffRef(row, col);
    }

    // note that this function is needed by assign to correctly align loads/stores
    // TODO make Assign use .data()
    inline Scalar& coeffRef(Index index)
    {
      EIGEN_STATIC_ASSERT_LVALUE(Lhs)
      return m_matrix.const_cast_derived().coeffRef(index);
    }
    inline const Scalar& coeffRef(Index index) const
    {
      return m_matrix.const_cast_derived().coeffRef(index);
    }

    template<typename OtherDerived>
    void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
    {
      OtherDerived& _other = other.const_cast_derived();
      eigen_internal_assert(row >= 0 && row < rows()
                         && col >= 0 && col < cols());
      Scalar& tmp = m_matrix.coeffRef(row,col);
      tmp = m_functor(tmp, _other.coeff(row,col));
    }

    template<typename OtherDerived>
    void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
    {
      OtherDerived& _other = other.const_cast_derived();
      eigen_internal_assert(index >= 0 && index < m_matrix.size());
      Scalar& tmp = m_matrix.coeffRef(index);
      tmp = m_functor(tmp, _other.coeff(index));
    }

    template<typename OtherDerived, int StoreMode, int LoadMode>
    void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
    {
      OtherDerived& _other = other.const_cast_derived();
      eigen_internal_assert(row >= 0 && row < rows()
                        && col >= 0 && col < cols());
      m_matrix.template writePacket<StoreMode>(row, col,
        m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
    }

    template<typename OtherDerived, int StoreMode, int LoadMode>
    void copyPacket(Index index, const DenseBase<OtherDerived>& other)
    {
      OtherDerived& _other = other.const_cast_derived();
      eigen_internal_assert(index >= 0 && index < m_matrix.size());
      m_matrix.template writePacket<StoreMode>(index,
        m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
    }

    // reimplement lazyAssign to handle complex *= real
    // see CwiseBinaryOp ctor for details
    template<typename RhsDerived>
    EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
    {
      EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
      EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
      
    #ifdef EIGEN_DEBUG_ASSIGN
      internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
    #endif
      eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
      internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
    #ifndef EIGEN_NO_DEBUG
      this->checkTransposeAliasing(rhs.derived());
    #endif
      return *this;
    }
    
    // overloaded to honor evaluation of special matrices
    // maybe another solution would be to not use SelfCwiseBinaryOp
    // at first...
    SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
    {
      typename internal::nested<Rhs>::type rhs(_rhs);
      return Base::operator=(rhs);
    }

  protected:
    Lhs& m_matrix;
    const BinaryOp& m_functor;

  private:
    SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
};

template<typename Derived>
inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
{
  typedef typename Derived::PlainObject PlainObject;
  SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
  tmp = PlainObject::Constant(rows(),cols(),other);
  return derived();
}

template<typename Derived>
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
{
  typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
                                        internal::scalar_quotient_op<Scalar>,
                                        internal::scalar_product_op<Scalar> >::type BinOp;
  typedef typename Derived::PlainObject PlainObject;
  SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
  tmp = PlainObject::Constant(rows(),cols(), NumTraits<Scalar>::IsInteger ? other : Scalar(1)/other);
  return derived();
}

#endif // EIGEN_SELFCWISEBINARYOP_H