strtodtest.cpp 4.18 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Tencent is pleased to support the open source community by making RapidJSON available.
// 
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software distributed 
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
// CONDITIONS OF ANY KIND, either express or implied. See the License for the 
// specific language governing permissions and limitations under the License.

#include "unittest.h"

#include "rapidjson/internal/strtod.h"

#ifdef __clang__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(unreachable-code)
#endif

#define BIGINTEGER_LITERAL(s) BigInteger(s, sizeof(s) - 1)

using namespace rapidjson::internal;

TEST(Strtod, CheckApproximationCase) {
    static const int kSignificandSize = 52;
    static const int kExponentBias = 0x3FF;
    static const uint64_t kExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
    static const uint64_t kSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
    static const uint64_t kHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);

    // http://www.exploringbinary.com/using-integers-to-check-a-floating-point-approximation/
    // Let b = 0x1.465a72e467d88p-149
    //       = 5741268244528520 x 2^-201
    union {
        double d;
        uint64_t u;
    }u;
    u.u = 0x465a72e467d88 | ((static_cast<uint64_t>(-149 + kExponentBias)) << kSignificandSize);
    const double b = u.d;
    const uint64_t bInt = (u.u & kSignificandMask) | kHiddenBit;
    const int bExp = static_cast<int>(((u.u & kExponentMask) >> kSignificandSize) - kExponentBias - kSignificandSize);
    EXPECT_DOUBLE_EQ(1.7864e-45, b);
    EXPECT_EQ(RAPIDJSON_UINT64_C2(0x001465a7, 0x2e467d88), bInt);
    EXPECT_EQ(-201, bExp);

    // Let d = 17864 x 10-49
    const char dInt[] = "17864";
    const int dExp = -49;

    // Let h = 2^(bExp-1)
    const int hExp = bExp - 1;
    EXPECT_EQ(-202, hExp);

    int dS_Exp2 = 0;
    int dS_Exp5 = 0;
    int bS_Exp2 = 0;
    int bS_Exp5 = 0;
    int hS_Exp2 = 0;
    int hS_Exp5 = 0;

    // Adjust for decimal exponent
    if (dExp >= 0) {
        dS_Exp2 += dExp;
        dS_Exp5 += dExp;
    }
    else {
        bS_Exp2 -= dExp;
        bS_Exp5 -= dExp;
        hS_Exp2 -= dExp;
        hS_Exp5 -= dExp;
    }

    // Adjust for binary exponent
    if (bExp >= 0)
        bS_Exp2 += bExp;
    else {
        dS_Exp2 -= bExp;
        hS_Exp2 -= bExp;
    }

    // Adjust for half ulp exponent
    if (hExp >= 0)
        hS_Exp2 += hExp;
    else {
        dS_Exp2 -= hExp;
        bS_Exp2 -= hExp;
    }

    // Remove common power of two factor from all three scaled values
    int common_Exp2 = (std::min)(dS_Exp2, (std::min)(bS_Exp2, hS_Exp2));
    dS_Exp2 -= common_Exp2;
    bS_Exp2 -= common_Exp2;
    hS_Exp2 -= common_Exp2;

    EXPECT_EQ(153, dS_Exp2);
    EXPECT_EQ(0, dS_Exp5);
    EXPECT_EQ(1, bS_Exp2);
    EXPECT_EQ(49, bS_Exp5);
    EXPECT_EQ(0, hS_Exp2);
    EXPECT_EQ(49, hS_Exp5);

    BigInteger dS = BIGINTEGER_LITERAL(dInt);
    dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<size_t>(dS_Exp2);

    BigInteger bS(bInt);
    bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<size_t>(bS_Exp2);

    BigInteger hS(1);
    hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<size_t>(hS_Exp2);

    EXPECT_TRUE(BIGINTEGER_LITERAL("203970822259994138521801764465966248930731085529088") == dS);
    EXPECT_TRUE(BIGINTEGER_LITERAL("203970822259994122305215569213032722473144531250000") == bS);
    EXPECT_TRUE(BIGINTEGER_LITERAL("17763568394002504646778106689453125") == hS);

    EXPECT_EQ(1, dS.Compare(bS));
    
    BigInteger delta(0);
    EXPECT_FALSE(dS.Difference(bS, &delta));
    EXPECT_TRUE(BIGINTEGER_LITERAL("16216586195252933526457586554279088") == delta);
    EXPECT_TRUE(bS.Difference(dS, &delta));
    EXPECT_TRUE(BIGINTEGER_LITERAL("16216586195252933526457586554279088") == delta);

    EXPECT_EQ(-1, delta.Compare(hS));
}

#ifdef __clang__
RAPIDJSON_DIAG_POP
#endif