Redux.h 13.7 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_REDUX_H
#define EIGEN_REDUX_H

namespace internal {

// TODO
//  * implement other kind of vectorization
//  * factorize code

/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/

template<typename Func, typename Derived>
struct redux_traits
{
public:
  enum {
    PacketSize = packet_traits<typename Derived::Scalar>::size,
    InnerMaxSize = int(Derived::IsRowMajor)
                 ? Derived::MaxColsAtCompileTime
                 : Derived::MaxRowsAtCompileTime
  };

  enum {
    MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
                  && (functor_traits<Func>::PacketAccess),
    MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit),
    MaySliceVectorize  = MightVectorize && int(InnerMaxSize)>=3*PacketSize
  };

public:
  enum {
    Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
              : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal)
                                        : int(DefaultTraversal)
  };

public:
  enum {
    Cost = (  Derived::SizeAtCompileTime == Dynamic
           || Derived::CoeffReadCost == Dynamic
           || (Derived::SizeAtCompileTime!=1 && functor_traits<Func>::Cost == Dynamic)
           ) ? Dynamic
           : Derived::SizeAtCompileTime * Derived::CoeffReadCost
               + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
    UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
  };

public:
  enum {
    Unrolling = Cost != Dynamic && Cost <= UnrollingLimit
              ? CompleteUnrolling
              : NoUnrolling
  };
};

/***************************************************************************
* Part 2 : unrollers
***************************************************************************/

/*** no vectorization ***/

template<typename Func, typename Derived, int Start, int Length>
struct redux_novec_unroller
{
  enum {
    HalfLength = Length/2
  };

  typedef typename Derived::Scalar Scalar;

  EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func)
  {
    return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
                redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
  }
};

template<typename Func, typename Derived, int Start>
struct redux_novec_unroller<Func, Derived, Start, 1>
{
  enum {
    outer = Start / Derived::InnerSizeAtCompileTime,
    inner = Start % Derived::InnerSizeAtCompileTime
  };

  typedef typename Derived::Scalar Scalar;

  EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&)
  {
    return mat.coeffByOuterInner(outer, inner);
  }
};

// This is actually dead code and will never be called. It is required
// to prevent false warnings regarding failed inlining though
// for 0 length run() will never be called at all.
template<typename Func, typename Derived, int Start>
struct redux_novec_unroller<Func, Derived, Start, 0>
{
  typedef typename Derived::Scalar Scalar;
  EIGEN_STRONG_INLINE static Scalar run(const Derived&, const Func&) { return Scalar(); }
};

/*** vectorization ***/

template<typename Func, typename Derived, int Start, int Length>
struct redux_vec_unroller
{
  enum {
    PacketSize = packet_traits<typename Derived::Scalar>::size,
    HalfLength = Length/2
  };

  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type PacketScalar;

  EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func)
  {
    return func.packetOp(
            redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
            redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
  }
};

template<typename Func, typename Derived, int Start>
struct redux_vec_unroller<Func, Derived, Start, 1>
{
  enum {
    index = Start * packet_traits<typename Derived::Scalar>::size,
    outer = index / int(Derived::InnerSizeAtCompileTime),
    inner = index % int(Derived::InnerSizeAtCompileTime),
    alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
  };

  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type PacketScalar;

  EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&)
  {
    return mat.template packetByOuterInner<alignment>(outer, inner);
  }
};

/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/

template<typename Func, typename Derived,
         int Traversal = redux_traits<Func, Derived>::Traversal,
         int Unrolling = redux_traits<Func, Derived>::Unrolling
>
struct redux_impl;

template<typename Func, typename Derived>
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Index Index;
  static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
  {
    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
    Scalar res;
    res = mat.coeffByOuterInner(0, 0);
    for(Index i = 1; i < mat.innerSize(); ++i)
      res = func(res, mat.coeffByOuterInner(0, i));
    for(Index i = 1; i < mat.outerSize(); ++i)
      for(Index j = 0; j < mat.innerSize(); ++j)
        res = func(res, mat.coeffByOuterInner(i, j));
    return res;
  }
};

template<typename Func, typename Derived>
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
  : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
{};

template<typename Func, typename Derived>
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type PacketScalar;
  typedef typename Derived::Index Index;

  static Scalar run(const Derived& mat, const Func& func)
  {
    const Index size = mat.size();
    eigen_assert(size && "you are using an empty matrix");
    const Index packetSize = packet_traits<Scalar>::size;
    const Index alignedStart = first_aligned(mat);
    enum {
      alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
                ? Aligned : Unaligned
    };
    const Index alignedSize = ((size-alignedStart)/packetSize)*packetSize;
    const Index alignedEnd = alignedStart + alignedSize;
    Scalar res;
    if(alignedSize)
    {
      PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
      for(Index index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
        packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index));
      res = func.predux(packet_res);

      for(Index index = 0; index < alignedStart; ++index)
        res = func(res,mat.coeff(index));

      for(Index index = alignedEnd; index < size; ++index)
        res = func(res,mat.coeff(index));
    }
    else // too small to vectorize anything.
         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
    {
      res = mat.coeff(0);
      for(Index index = 1; index < size; ++index)
        res = func(res,mat.coeff(index));
    }

    return res;
  }
};

template<typename Func, typename Derived>
struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type PacketScalar;
  typedef typename Derived::Index Index;

  static Scalar run(const Derived& mat, const Func& func)
  {
    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
    const Index innerSize = mat.innerSize();
    const Index outerSize = mat.outerSize();
    enum {
      packetSize = packet_traits<Scalar>::size
    };
    const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
    Scalar res;
    if(packetedInnerSize)
    {
      PacketScalar packet_res = mat.template packet<Unaligned>(0,0);
      for(Index j=0; j<outerSize; ++j)
        for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
          packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i));

      res = func.predux(packet_res);
      for(Index j=0; j<outerSize; ++j)
        for(Index i=packetedInnerSize; i<innerSize; ++i)
          res = func(res, mat.coeffByOuterInner(j,i));
    }
    else // too small to vectorize anything.
         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
    {
      res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
    }

    return res;
  }
};

template<typename Func, typename Derived>
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
{
  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type PacketScalar;
  enum {
    PacketSize = packet_traits<Scalar>::size,
    Size = Derived::SizeAtCompileTime,
    VectorizedSize = (Size / PacketSize) * PacketSize
  };
  EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func)
  {
    eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
    Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
    if (VectorizedSize != Size)
      res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
    return res;
  }
};

} // end namespace internal

/***************************************************************************
* Part 4 : public API
***************************************************************************/


/** \returns the result of a full redux operation on the whole matrix or vector using \a func
  *
  * The template parameter \a BinaryOp is the type of the functor \a func which must be
  * an associative operator. Both current STL and TR1 functor styles are handled.
  *
  * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
  */
template<typename Derived>
template<typename Func>
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
DenseBase<Derived>::redux(const Func& func) const
{
  typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
  return internal::redux_impl<Func, ThisNested>
            ::run(derived(), func);
}

/** \returns the minimum of all coefficients of *this
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff() const
{
  return this->redux(Eigen::internal::scalar_min_op<Scalar>());
}

/** \returns the maximum of all coefficients of *this
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff() const
{
  return this->redux(Eigen::internal::scalar_max_op<Scalar>());
}

/** \returns the sum of all coefficients of *this
  *
  * \sa trace(), prod(), mean()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::sum() const
{
  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
    return Scalar(0);
  return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
}

/** \returns the mean of all coefficients of *this
*
* \sa trace(), prod(), sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::mean() const
{
  return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
}

/** \returns the product of all coefficients of *this
  *
  * Example: \include MatrixBase_prod.cpp
  * Output: \verbinclude MatrixBase_prod.out
  *
  * \sa sum(), mean(), trace()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::prod() const
{
  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
    return Scalar(1);
  return this->redux(Eigen::internal::scalar_product_op<Scalar>());
}

/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
  *
  * \c *this can be any matrix, not necessarily square.
  *
  * \sa diagonal(), sum()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::trace() const
{
  return derived().diagonal().sum();
}

#endif // EIGEN_REDUX_H