DenseBase.h 23.7 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H

/** \class DenseBase
  * \ingroup Core_Module
  *
  * \brief Base class for all dense matrices, vectors, and arrays
  *
  * This class is the base that is inherited by all dense objects (matrix, vector, arrays,
  * and related expression types). The common Eigen API for dense objects is contained in this class.
  *
  * \tparam Derived is the derived type, e.g., a matrix type or an expression.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
  : public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
                                     typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
#else
  : public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
  public:
    using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
                typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;

    class InnerIterator;

    typedef typename internal::traits<Derived>::StorageKind StorageKind;

    /** \brief The type of indices 
      * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
      * \sa \ref TopicPreprocessorDirectives.
      */
    typedef typename internal::traits<Derived>::Index Index; 

    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    typedef DenseCoeffsBase<Derived> Base;
    using Base::derived;
    using Base::const_cast_derived;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::rowIndexByOuterInner;
    using Base::colIndexByOuterInner;
    using Base::coeff;
    using Base::coeffByOuterInner;
    using Base::packet;
    using Base::packetByOuterInner;
    using Base::writePacket;
    using Base::writePacketByOuterInner;
    using Base::coeffRef;
    using Base::coeffRefByOuterInner;
    using Base::copyCoeff;
    using Base::copyCoeffByOuterInner;
    using Base::copyPacket;
    using Base::copyPacketByOuterInner;
    using Base::operator();
    using Base::operator[];
    using Base::x;
    using Base::y;
    using Base::z;
    using Base::w;
    using Base::stride;
    using Base::innerStride;
    using Base::outerStride;
    using Base::rowStride;
    using Base::colStride;
    typedef typename Base::CoeffReturnType CoeffReturnType;

    enum {

      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
        /**< The number of rows at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */

      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
        /**< The number of columns at compile-time. This is just a copy of the value provided
          * by the \a Derived type. If a value is not known at compile-time,
          * it is set to the \a Dynamic constant.
          * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */


      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
                                                   internal::traits<Derived>::ColsAtCompileTime>::ret),
        /**< This is equal to the number of coefficients, i.e. the number of
          * rows times the number of columns, or to \a Dynamic if this is not
          * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */

      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
        /**< This value is equal to the maximum possible number of rows that this expression
          * might have. If this expression might have an arbitrarily high number of rows,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
          */

      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
        /**< This value is equal to the maximum possible number of columns that this expression
          * might have. If this expression might have an arbitrarily high number of columns,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
          */

      MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
                                                      internal::traits<Derived>::MaxColsAtCompileTime>::ret),
        /**< This value is equal to the maximum possible number of coefficients that this expression
          * might have. If this expression might have an arbitrarily high number of coefficients,
          * this value is set to \a Dynamic.
          *
          * This value is useful to know when evaluating an expression, in order to determine
          * whether it is possible to avoid doing a dynamic memory allocation.
          *
          * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
          */

      IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
                           || internal::traits<Derived>::MaxColsAtCompileTime == 1,
        /**< This is set to true if either the number of rows or the number of
          * columns is known at compile-time to be equal to 1. Indeed, in that case,
          * we are dealing with a column-vector (if there is only one column) or with
          * a row-vector (if there is only one row). */

      Flags = internal::traits<Derived>::Flags,
        /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
          * constructed from this one. See the \ref flags "list of flags".
          */

      IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */

      InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? SizeAtCompileTime
                             : int(IsRowMajor) ? ColsAtCompileTime : RowsAtCompileTime,

      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
        /**< This is a rough measure of how expensive it is to read one coefficient from
          * this expression.
          */

      InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
      OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
    };

    enum { ThisConstantIsPrivateInPlainObjectBase };

    /** \returns the number of nonzero coefficients which is in practice the number
      * of stored coefficients. */
    inline Index nonZeros() const { return size(); }
    /** \returns true if either the number of rows or the number of columns is equal to 1.
      * In other words, this function returns
      * \code rows()==1 || cols()==1 \endcode
      * \sa rows(), cols(), IsVectorAtCompileTime. */

    /** \returns the outer size.
      *
      * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
      * column-major matrix, and the number of rows for a row-major matrix. */
    Index outerSize() const
    {
      return IsVectorAtCompileTime ? 1
           : int(IsRowMajor) ? this->rows() : this->cols();
    }

    /** \returns the inner size.
      *
      * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a 
      * column-major matrix, and the number of columns for a row-major matrix. */
    Index innerSize() const
    {
      return IsVectorAtCompileTime ? this->size()
           : int(IsRowMajor) ? this->cols() : this->rows();
    }

    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
      * nothing else.
      */
    void resize(Index size)
    {
      EIGEN_ONLY_USED_FOR_DEBUG(size);
      eigen_assert(size == this->size()
                && "DenseBase::resize() does not actually allow to resize.");
    }
    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
      * nothing else.
      */
    void resize(Index rows, Index cols)
    {
      EIGEN_ONLY_USED_FOR_DEBUG(rows);
      EIGEN_ONLY_USED_FOR_DEBUG(cols);
      eigen_assert(rows == this->rows() && cols == this->cols()
                && "DenseBase::resize() does not actually allow to resize.");
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN

    /** \internal Represents a matrix with all coefficients equal to one another*/
    typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
    /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
    /** \internal Represents a vector with linearly spaced coefficients that allows random access. */
    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
    /** \internal the return type of MatrixBase::eigenvalues() */
    typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;

#endif // not EIGEN_PARSED_BY_DOXYGEN

    /** Copies \a other into *this. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& operator=(const DenseBase<OtherDerived>& other);

    /** Special case of the template operator=, in order to prevent the compiler
      * from generating a default operator= (issue hit with g++ 4.1)
      */
    Derived& operator=(const DenseBase& other);

    template<typename OtherDerived>
    Derived& operator=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator+=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator-=(const EigenBase<OtherDerived> &other);

    template<typename OtherDerived>
    Derived& operator=(const ReturnByValue<OtherDerived>& func);

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Copies \a other into *this without evaluating other. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& lazyAssign(const DenseBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN

    CommaInitializer<Derived> operator<< (const Scalar& s);

    template<unsigned int Added,unsigned int Removed>
    const Flagged<Derived, Added, Removed> flagged() const;

    template<typename OtherDerived>
    CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);

    Eigen::Transpose<Derived> transpose();
    typedef const Transpose<const Derived> ConstTransposeReturnType;
    ConstTransposeReturnType transpose() const;
    void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
  protected:
    template<typename OtherDerived>
    void checkTransposeAliasing(const OtherDerived& other) const;
  public:
#endif

    typedef VectorBlock<Derived> SegmentReturnType;
    typedef const VectorBlock<const Derived> ConstSegmentReturnType;
    template<int Size> struct FixedSegmentReturnType { typedef VectorBlock<Derived, Size> Type; };
    template<int Size> struct ConstFixedSegmentReturnType { typedef const VectorBlock<const Derived, Size> Type; };
    
    // Note: The "DenseBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
    SegmentReturnType segment(Index start, Index size);
    typename DenseBase::ConstSegmentReturnType segment(Index start, Index size) const;

    SegmentReturnType head(Index size);
    typename DenseBase::ConstSegmentReturnType head(Index size) const;

    SegmentReturnType tail(Index size);
    typename DenseBase::ConstSegmentReturnType tail(Index size) const;

    template<int Size> typename FixedSegmentReturnType<Size>::Type head();
    template<int Size> typename ConstFixedSegmentReturnType<Size>::Type head() const;

    template<int Size> typename FixedSegmentReturnType<Size>::Type tail();
    template<int Size> typename ConstFixedSegmentReturnType<Size>::Type tail() const;

    template<int Size> typename FixedSegmentReturnType<Size>::Type segment(Index start);
    template<int Size> typename ConstFixedSegmentReturnType<Size>::Type segment(Index start) const;

    static const ConstantReturnType
    Constant(Index rows, Index cols, const Scalar& value);
    static const ConstantReturnType
    Constant(Index size, const Scalar& value);
    static const ConstantReturnType
    Constant(const Scalar& value);

    static const SequentialLinSpacedReturnType
    LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
    static const RandomAccessLinSpacedReturnType
    LinSpaced(Index size, const Scalar& low, const Scalar& high);
    static const SequentialLinSpacedReturnType
    LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
    static const RandomAccessLinSpacedReturnType
    LinSpaced(const Scalar& low, const Scalar& high);

    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(Index size, const CustomNullaryOp& func);
    template<typename CustomNullaryOp>
    static const CwiseNullaryOp<CustomNullaryOp, Derived>
    NullaryExpr(const CustomNullaryOp& func);

    static const ConstantReturnType Zero(Index rows, Index cols);
    static const ConstantReturnType Zero(Index size);
    static const ConstantReturnType Zero();
    static const ConstantReturnType Ones(Index rows, Index cols);
    static const ConstantReturnType Ones(Index size);
    static const ConstantReturnType Ones();

    void fill(const Scalar& value);
    Derived& setConstant(const Scalar& value);
    Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
    Derived& setLinSpaced(const Scalar& low, const Scalar& high);
    Derived& setZero();
    Derived& setOnes();
    Derived& setRandom();

    template<typename OtherDerived>
    bool isApprox(const DenseBase<OtherDerived>& other,
                  RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isMuchSmallerThan(const RealScalar& other,
                           RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
    template<typename OtherDerived>
    bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
                           RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

    bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
    bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;

    inline Derived& operator*=(const Scalar& other);
    inline Derived& operator/=(const Scalar& other);

    /** \returns the matrix or vector obtained by evaluating this expression.
      *
      * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
      * a const reference, in order to avoid a useless copy.
      */
    EIGEN_STRONG_INLINE const typename internal::eval<Derived>::type eval() const
    {
      // Even though MSVC does not honor strong inlining when the return type
      // is a dynamic matrix, we desperately need strong inlining for fixed
      // size types on MSVC.
      return typename internal::eval<Derived>::type(derived());
    }

    /** swaps *this with the expression \a other.
      *
      */
    template<typename OtherDerived>
    void swap(const DenseBase<OtherDerived>& other,
              int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
    {
      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
    }

    /** swaps *this with the matrix or array \a other.
      *
      */
    template<typename OtherDerived>
    void swap(PlainObjectBase<OtherDerived>& other)
    {
      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
    }


    inline const NestByValue<Derived> nestByValue() const;
    inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
    inline ForceAlignedAccess<Derived> forceAlignedAccess();
    template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
    template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();

    Scalar sum() const;
    Scalar mean() const;
    Scalar trace() const;

    Scalar prod() const;

    typename internal::traits<Derived>::Scalar minCoeff() const;
    typename internal::traits<Derived>::Scalar maxCoeff() const;

    template<typename IndexType>
    typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
    template<typename IndexType>
    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;

    template<typename BinaryOp>
    typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
    redux(const BinaryOp& func) const;

    template<typename Visitor>
    void visit(Visitor& func) const;

    inline const WithFormat<Derived> format(const IOFormat& fmt) const;

    /** \returns the unique coefficient of a 1x1 expression */
    CoeffReturnType value() const
    {
      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
      eigen_assert(this->rows() == 1 && this->cols() == 1);
      return derived().coeff(0,0);
    }

/////////// Array module ///////////

    bool all(void) const;
    bool any(void) const;
    Index count() const;

    typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
    typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
    typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
    typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;

    ConstRowwiseReturnType rowwise() const;
    RowwiseReturnType rowwise();
    ConstColwiseReturnType colwise() const;
    ColwiseReturnType colwise();

    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();

    template<typename ThenDerived,typename ElseDerived>
    const Select<Derived,ThenDerived,ElseDerived>
    select(const DenseBase<ThenDerived>& thenMatrix,
           const DenseBase<ElseDerived>& elseMatrix) const;

    template<typename ThenDerived>
    inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
    select(const DenseBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;

    template<typename ElseDerived>
    inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
    select(typename ElseDerived::Scalar thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;

    template<int p> RealScalar lpNorm() const;

    template<int RowFactor, int ColFactor>
    const Replicate<Derived,RowFactor,ColFactor> replicate() const;
    const Replicate<Derived,Dynamic,Dynamic> replicate(Index rowFacor,Index colFactor) const;

    typedef Reverse<Derived, BothDirections> ReverseReturnType;
    typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
    ReverseReturnType reverse();
    ConstReverseReturnType reverse() const;
    void reverseInPlace();

#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
#   include "../plugins/BlockMethods.h"
#   ifdef EIGEN_DENSEBASE_PLUGIN
#     include EIGEN_DENSEBASE_PLUGIN
#   endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS

#ifdef EIGEN2_SUPPORT

    Block<Derived> corner(CornerType type, Index cRows, Index cCols);
    const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
    template<int CRows, int CCols>
    Block<Derived, CRows, CCols> corner(CornerType type);
    template<int CRows, int CCols>
    const Block<Derived, CRows, CCols> corner(CornerType type) const;

#endif // EIGEN2_SUPPORT


    // disable the use of evalTo for dense objects with a nice compilation error
    template<typename Dest> inline void evalTo(Dest& ) const
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
    }

  protected:
    /** Default constructor. Do nothing. */
    DenseBase()
    {
      /* Just checks for self-consistency of the flags.
       * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
       */
#ifdef EIGEN_INTERNAL_DEBUGGING
      EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
                        && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
                          INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
    }

  private:
    explicit DenseBase(int);
    DenseBase(int,int);
    template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
};

#endif // EIGEN_DENSEBASE_H