qwt_raster_data.cpp 11.6 KB
Newer Older
pixhawk's avatar
pixhawk committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_raster_data.h"

class QwtRasterData::Contour3DPoint
{
public:
    inline void setPos(double x, double y)
    {
        d_x = x;
        d_y = y;
    }

    inline QwtDoublePoint pos() const
    {
        return QwtDoublePoint(d_x, d_y);
    }

    inline void setX(double x) { d_x = x; }
    inline void setY(double y) { d_y = y; }
    inline void setZ(double z) { d_z = z; }

    inline double x() const { return d_x; }
    inline double y() const { return d_y; }
    inline double z() const { return d_z; }

private:
    double d_x;
    double d_y;
    double d_z;
};

class QwtRasterData::ContourPlane
{
public:
    inline ContourPlane(double z):
        d_z(z)
    {
    }

    inline bool intersect(const Contour3DPoint vertex[3],
        QwtDoublePoint line[2], bool ignoreOnPlane) const;

    inline double z() const { return d_z; }

private:
    inline int compare(double z) const;
    inline QwtDoublePoint intersection(
        const Contour3DPoint& p1, const Contour3DPoint &p2) const;

    double d_z;
};

inline bool QwtRasterData::ContourPlane::intersect(
    const Contour3DPoint vertex[3], QwtDoublePoint line[2],
    bool ignoreOnPlane) const
{
    bool found = true;

    // Are the vertices below (-1), on (0) or above (1) the plan ?
    const int eq1 = compare(vertex[0].z());
    const int eq2 = compare(vertex[1].z());
    const int eq3 = compare(vertex[2].z());

    /*
        (a) All the vertices lie below the contour level.
        (b) Two vertices lie below and one on the contour level.
        (c) Two vertices lie below and one above the contour level.
        (d) One vertex lies below and two on the contour level.
        (e) One vertex lies below, one on and one above the contour level.
        (f) One vertex lies below and two above the contour level.
        (g) Three vertices lie on the contour level.
        (h) Two vertices lie on and one above the contour level.
        (i) One vertex lies on and two above the contour level.
        (j) All the vertices lie above the contour level.
     */

    static const int tab[3][3][3] =
    {
        // jump table to avoid nested case statements
        { { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
        { { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
        { { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
    };

    const int edgeType = tab[eq1+1][eq2+1][eq3+1];
    switch (edgeType)  
    {
        case 1:
            // d(0,0,-1), h(0,0,1)
            line[0] = vertex[0].pos();
            line[1] = vertex[1].pos();
            break;
        case 2:
            // d(-1,0,0), h(1,0,0)
            line[0] = vertex[1].pos();
            line[1] = vertex[2].pos();
            break;
        case 3:
            // d(0,-1,0), h(0,1,0)
            line[0] = vertex[2].pos();
            line[1] = vertex[0].pos();
            break;
        case 4:
            // e(0,-1,1), e(0,1,-1)
            line[0] = vertex[0].pos();
            line[1] = intersection(vertex[1], vertex[2]);
            break;
        case 5:
            // e(-1,0,1), e(1,0,-1)
            line[0] = vertex[1].pos();
            line[1] = intersection(vertex[2], vertex[0]);
            break;
        case 6:
            // e(-1,1,0), e(1,0,-1)
            line[0] = vertex[1].pos();
            line[1] = intersection(vertex[0], vertex[1]);
            break;
        case 7:
            // c(-1,1,-1), f(1,1,-1)
            line[0] = intersection(vertex[0], vertex[1]);
            line[1] = intersection(vertex[1], vertex[2]);
            break;
        case 8:
            // c(-1,-1,1), f(1,1,-1)
            line[0] = intersection(vertex[1], vertex[2]);
            line[1] = intersection(vertex[2], vertex[0]);
            break;
        case 9:
            // f(-1,1,1), c(1,-1,-1)
            line[0] = intersection(vertex[2], vertex[0]);
            line[1] = intersection(vertex[0], vertex[1]);
            break;
        case 10:
            // g(0,0,0)
            // The CONREC algorithm has no satisfying solution for
            // what to do, when all vertices are on the plane.

            if ( ignoreOnPlane )
                found = false;
            else
            {
                line[0] = vertex[2].pos();
                line[1] = vertex[0].pos();
            }
            break;
        default:
            found = false;
    }

    return found;
}

inline int QwtRasterData::ContourPlane::compare(double z) const
{
    if (z > d_z)
        return 1;

    if (z < d_z)
        return -1;

    return 0;
}

inline QwtDoublePoint QwtRasterData::ContourPlane::intersection(
    const Contour3DPoint& p1, const Contour3DPoint &p2) const
{
    const double h1 = p1.z() - d_z;
    const double h2 = p2.z() - d_z;

    const double x = (h2 * p1.x() - h1 * p2.x()) / (h2 - h1);
    const double y = (h2 * p1.y() - h1 * p2.y()) / (h2 - h1);

    return QwtDoublePoint(x, y);
}

QwtRasterData::QwtRasterData()
{
}

QwtRasterData::QwtRasterData(const QwtDoubleRect &boundingRect):
    d_boundingRect(boundingRect)
{
}

QwtRasterData::~QwtRasterData()
{
}

void QwtRasterData::setBoundingRect(const QwtDoubleRect &boundingRect)
{
    d_boundingRect = boundingRect;
}

QwtDoubleRect QwtRasterData::boundingRect() const
{
    return d_boundingRect;
}

/*!
  \brief Initialize a raster

  Before the composition of an image QwtPlotSpectrogram calls initRaster,
  announcing the area and its resolution that will be requested.
  
  The default implementation does nothing, but for data sets that
  are stored in files, it might be good idea to reimplement initRaster,
  where the data is resampled and loaded into memory.
  
  \param rect Area of the raster
  \param raster Number of horizontal and vertical pixels

  \sa initRaster(), value()
*/
void QwtRasterData::initRaster(const QwtDoubleRect &, const QSize&)
{
}

/*!
  \brief Discard a raster

  After the composition of an image QwtPlotSpectrogram calls discardRaster().
  
  The default implementation does nothing, but if data has been loaded
  in initRaster(), it could deleted now.

  \sa initRaster(), value()
*/
void QwtRasterData::discardRaster()
{
}

/*!
   \brief Find the raster of the data for an area

   The resolution is the number of horizontal and vertical pixels
   that the data can return for an area. An invalid resolution
   indicates that the data can return values for any detail level.

   The resolution will limit the size of the image that is rendered 
   from the data. F.e. this might be important when printing a spectrogram
   to a A0 printer with 600 dpi.
   
   The default implementation returns an invalid resolution (size)

   \param rect In most implementations the resolution of the data doesn't 
               depend on the requested rectangle.

   \return Resolution, as number of horizontal and vertical pixels
*/
QSize QwtRasterData::rasterHint(const QwtDoubleRect &) const
{
    return QSize(); // use screen resolution
}

/*!
   Calculate contour lines
   
   An adaption of CONREC, a simple contouring algorithm.
   http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
*/ 
#if QT_VERSION >= 0x040000
QwtRasterData::ContourLines QwtRasterData::contourLines(
    const QwtDoubleRect &rect, const QSize &raster, 
    const QList<double> &levels, int flags) const
#else
QwtRasterData::ContourLines QwtRasterData::contourLines(
    const QwtDoubleRect &rect, const QSize &raster, 
    const QValueList<double> &levels, int flags) const
#endif
{   
    ContourLines contourLines;
    
    if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
        return contourLines;

    const double dx = rect.width() / raster.width();
    const double dy = rect.height() / raster.height();

    const bool ignoreOnPlane =
        flags & QwtRasterData::IgnoreAllVerticesOnLevel;

    const QwtDoubleInterval range = this->range();
    bool ignoreOutOfRange = false;
    if ( range.isValid() )
        ignoreOutOfRange = flags & IgnoreOutOfRange;

    ((QwtRasterData*)this)->initRaster(rect, raster);

    for ( int y = 0; y < raster.height() - 1; y++ )
    {
        enum Position
        {
            Center,

            TopLeft,
            TopRight,
            BottomRight,
            BottomLeft,

            NumPositions
        };

        Contour3DPoint xy[NumPositions];

        for ( int x = 0; x < raster.width() - 1; x++ )
        {
            const QwtDoublePoint pos(rect.x() + x * dx, rect.y() + y * dy);

            if ( x == 0 )
            {
                xy[TopRight].setPos(pos.x(), pos.y());
                xy[TopRight].setZ(
                    value( xy[TopRight].x(), xy[TopRight].y())
                );

                xy[BottomRight].setPos(pos.x(), pos.y() + dy);
                xy[BottomRight].setZ(
                    value(xy[BottomRight].x(), xy[BottomRight].y())
                );
            }

            xy[TopLeft] = xy[TopRight];
            xy[BottomLeft] = xy[BottomRight];

            xy[TopRight].setPos(pos.x() + dx, pos.y());
            xy[BottomRight].setPos(pos.x() + dx, pos.y() + dy);

            xy[TopRight].setZ(
                value(xy[TopRight].x(), xy[TopRight].y())
            );
            xy[BottomRight].setZ(
                value(xy[BottomRight].x(), xy[BottomRight].y())
            );

            double zMin = xy[TopLeft].z();
            double zMax = zMin;
            double zSum = zMin;

            for ( int i = TopRight; i <= BottomLeft; i++ )
            {
                const double z = xy[i].z();

                zSum += z;
                if ( z < zMin )
                    zMin = z;
                if ( z > zMax )
                    zMax = z;
            }

            if ( ignoreOutOfRange )
            {
                if ( !range.contains(zMin) || !range.contains(zMax) )
                    continue;
            }

            if ( zMax < levels[0] ||
                zMin > levels[levels.size() - 1] )
            {
                continue;
            }

            xy[Center].setPos(pos.x() + 0.5 * dx, pos.y() + 0.5 * dy);
            xy[Center].setZ(0.25 * zSum);
            const int numLevels = (int)levels.size();
            for (int l = 0; l < numLevels; l++)
            {
                const double level = levels[l];
                if ( level < zMin || level > zMax )
                    continue;
#if QT_VERSION >= 0x040000
                QPolygonF &lines = contourLines[level];
#else
                QwtArray<QwtDoublePoint> &lines = contourLines[level];
#endif
                const ContourPlane plane(level);

                QwtDoublePoint line[2];
                Contour3DPoint vertex[3];

                for (int m = TopLeft; m < NumPositions; m++)
                {
                    vertex[0] = xy[m];
                    vertex[1] = xy[0];
                    vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];

                    const bool intersects =
                        plane.intersect(vertex, line, ignoreOnPlane);
                    if ( intersects )
                    {
#if QT_VERSION >= 0x040000
                        lines += line[0];
                        lines += line[1];
#else
                        const int index = lines.size();
                        lines.resize(lines.size() + 2, QGArray::SpeedOptim);

                        lines[index] = line[0];
                        lines[index+1] = line[1];
#endif
                    }
                }
            }
        }
    }

    ((QwtRasterData*)this)->discardRaster();

    return contourLines;
}