ConservativeSparseSparseProduct.h 8.26 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H

namespace Eigen { 

namespace internal {

template<typename Lhs, typename Rhs, typename ResultType>
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
  typedef typename remove_all<Lhs>::type::Scalar Scalar;
  typedef typename remove_all<Lhs>::type::Index Index;

  // make sure to call innerSize/outerSize since we fake the storage order.
  Index rows = lhs.innerSize();
  Index cols = rhs.outerSize();
  eigen_assert(lhs.outerSize() == rhs.innerSize());

  std::vector<bool> mask(rows,false);
  Matrix<Scalar,Dynamic,1> values(rows);
  Matrix<Index,Dynamic,1>  indices(rows);

  // estimate the number of non zero entries
  // given a rhs column containing Y non zeros, we assume that the respective Y columns
  // of the lhs differs in average of one non zeros, thus the number of non zeros for
  // the product of a rhs column with the lhs is X+Y where X is the average number of non zero
  // per column of the lhs.
  // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
  Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();

  res.setZero();
  res.reserve(Index(estimated_nnz_prod));
  // we compute each column of the result, one after the other
  for (Index j=0; j<cols; ++j)
  {

    res.startVec(j);
    Index nnz = 0;
    for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
    {
      Scalar y = rhsIt.value();
      Index k = rhsIt.index();
      for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
      {
        Index i = lhsIt.index();
        Scalar x = lhsIt.value();
        if(!mask[i])
        {
          mask[i] = true;
          values[i] = x * y;
          indices[nnz] = i;
          ++nnz;
        }
        else
          values[i] += x * y;
      }
    }

    // unordered insertion
    for(int k=0; k<nnz; ++k)
    {
      int i = indices[k];
      res.insertBackByOuterInnerUnordered(j,i) = values[i];
      mask[i] = false;
    }

#if 0
    // alternative ordered insertion code:

    int t200 = rows/(log2(200)*1.39);
    int t = (rows*100)/139;

    // FIXME reserve nnz non zeros
    // FIXME implement fast sort algorithms for very small nnz
    // if the result is sparse enough => use a quick sort
    // otherwise => loop through the entire vector
    // In order to avoid to perform an expensive log2 when the
    // result is clearly very sparse we use a linear bound up to 200.
    //if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
    //res.startVec(j);
    if(true)
    {
      if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
      for(int k=0; k<nnz; ++k)
      {
        int i = indices[k];
        res.insertBackByOuterInner(j,i) = values[i];
        mask[i] = false;
      }
    }
    else
    {
      // dense path
      for(int i=0; i<rows; ++i)
      {
        if(mask[i])
        {
          mask[i] = false;
          res.insertBackByOuterInner(j,i) = values[i];
        }
      }
    }
#endif

  }
  res.finalize();
}


} // end namespace internal

namespace internal {

template<typename Lhs, typename Rhs, typename ResultType,
  int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
  int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
  int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
struct conservative_sparse_sparse_product_selector;

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
  typedef typename remove_all<Lhs>::type LhsCleaned;
  typedef typename LhsCleaned::Scalar Scalar;

  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix resCol(lhs.rows(),rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
    // sort the non zeros:
    RowMajorMatrix resRow(resCol);
    res = resRow;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
     typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
     RowMajorMatrix rhsRow = rhs;
     RowMajorMatrix resRow(lhs.rows(), rhs.cols());
     internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
     res = resRow;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    RowMajorMatrix lhsRow = lhs;
    RowMajorMatrix resRow(lhs.rows(), rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
    res = resRow;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    RowMajorMatrix resRow(lhs.rows(), rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
    res = resRow;
  }
};


template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
  typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;

  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix resCol(lhs.rows(), rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix lhsCol = lhs;
    ColMajorMatrix resCol(lhs.rows(), rhs.cols());
    internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix rhsCol = rhs;
    ColMajorMatrix resCol(lhs.rows(), rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    RowMajorMatrix resRow(lhs.rows(),rhs.cols());
    internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
    // sort the non zeros:
    ColMajorMatrix resCol(resRow);
    res = resCol;
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H