AmbiVector.h 9.8 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_AMBIVECTOR_H
#define EIGEN_AMBIVECTOR_H

Don Gagne's avatar
Don Gagne committed
13 14 15 16
namespace Eigen { 

namespace internal {

LM's avatar
LM committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/** \internal
  * Hybrid sparse/dense vector class designed for intensive read-write operations.
  *
  * See BasicSparseLLT and SparseProduct for usage examples.
  */
template<typename _Scalar, typename _Index>
class AmbiVector
{
  public:
    typedef _Scalar Scalar;
    typedef _Index Index;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    AmbiVector(Index size)
      : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
    {
      resize(size);
    }

    void init(double estimatedDensity);
    void init(int mode);

    Index nonZeros() const;

    /** Specifies a sub-vector to work on */
    void setBounds(Index start, Index end) { m_start = start; m_end = end; }

    void setZero();

    void restart();
    Scalar& coeffRef(Index i);
    Scalar& coeff(Index i);

    class Iterator;

    ~AmbiVector() { delete[] m_buffer; }

    void resize(Index size)
    {
      if (m_allocatedSize < size)
        reallocate(size);
      m_size = size;
    }

    Index size() const { return m_size; }

  protected:

    void reallocate(Index size)
    {
      // if the size of the matrix is not too large, let's allocate a bit more than needed such
      // that we can handle dense vector even in sparse mode.
      delete[] m_buffer;
      if (size<1000)
      {
72
        Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
LM's avatar
LM committed
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
        m_buffer = new Scalar[allocSize];
      }
      else
      {
        m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
        m_buffer = new Scalar[size];
      }
      m_size = size;
      m_start = 0;
      m_end = m_size;
    }

    void reallocateSparse()
    {
      Index copyElements = m_allocatedElements;
Don Gagne's avatar
Don Gagne committed
89
      m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size);
LM's avatar
LM committed
90
      Index allocSize = m_allocatedElements * sizeof(ListEl);
91
      allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
LM's avatar
LM committed
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      Scalar* newBuffer = new Scalar[allocSize];
      memcpy(newBuffer,  m_buffer,  copyElements * sizeof(ListEl));
      delete[] m_buffer;
      m_buffer = newBuffer;
    }

  protected:
    // element type of the linked list
    struct ListEl
    {
      Index next;
      Index index;
      Scalar value;
    };

    // used to store data in both mode
    Scalar* m_buffer;
    Scalar m_zero;
    Index m_size;
    Index m_start;
    Index m_end;
    Index m_allocatedSize;
    Index m_allocatedElements;
    Index m_mode;

    // linked list mode
    Index m_llStart;
    Index m_llCurrent;
    Index m_llSize;
};

/** \returns the number of non zeros in the current sub vector */
template<typename _Scalar,typename _Index>
_Index AmbiVector<_Scalar,_Index>::nonZeros() const
{
  if (m_mode==IsSparse)
    return m_llSize;
  else
    return m_end - m_start;
}

template<typename _Scalar,typename _Index>
void AmbiVector<_Scalar,_Index>::init(double estimatedDensity)
{
  if (estimatedDensity>0.1)
    init(IsDense);
  else
    init(IsSparse);
}

template<typename _Scalar,typename _Index>
void AmbiVector<_Scalar,_Index>::init(int mode)
{
  m_mode = mode;
  if (m_mode==IsSparse)
  {
    m_llSize = 0;
    m_llStart = -1;
  }
}

/** Must be called whenever we might perform a write access
  * with an index smaller than the previous one.
  *
  * Don't worry, this function is extremely cheap.
  */
template<typename _Scalar,typename _Index>
void AmbiVector<_Scalar,_Index>::restart()
{
  m_llCurrent = m_llStart;
}

/** Set all coefficients of current subvector to zero */
template<typename _Scalar,typename _Index>
void AmbiVector<_Scalar,_Index>::setZero()
{
  if (m_mode==IsDense)
  {
    for (Index i=m_start; i<m_end; ++i)
      m_buffer[i] = Scalar(0);
  }
  else
  {
    eigen_assert(m_mode==IsSparse);
    m_llSize = 0;
    m_llStart = -1;
  }
}

template<typename _Scalar,typename _Index>
_Scalar& AmbiVector<_Scalar,_Index>::coeffRef(_Index i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    // TODO factorize the following code to reduce code generation
    eigen_assert(m_mode==IsSparse);
    if (m_llSize==0)
    {
      // this is the first element
      m_llStart = 0;
      m_llCurrent = 0;
      ++m_llSize;
      llElements[0].value = Scalar(0);
      llElements[0].index = i;
      llElements[0].next = -1;
      return llElements[0].value;
    }
    else if (i<llElements[m_llStart].index)
    {
      // this is going to be the new first element of the list
      ListEl& el = llElements[m_llSize];
      el.value = Scalar(0);
      el.index = i;
      el.next = m_llStart;
      m_llStart = m_llSize;
      ++m_llSize;
      m_llCurrent = m_llStart;
      return el.value;
    }
    else
    {
      Index nextel = llElements[m_llCurrent].next;
      eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
      while (nextel >= 0 && llElements[nextel].index<=i)
      {
        m_llCurrent = nextel;
        nextel = llElements[nextel].next;
      }

      if (llElements[m_llCurrent].index==i)
      {
        // the coefficient already exists and we found it !
        return llElements[m_llCurrent].value;
      }
      else
      {
        if (m_llSize>=m_allocatedElements)
        {
          reallocateSparse();
          llElements = reinterpret_cast<ListEl*>(m_buffer);
        }
        eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
        // let's insert a new coefficient
        ListEl& el = llElements[m_llSize];
        el.value = Scalar(0);
        el.index = i;
        el.next = llElements[m_llCurrent].next;
        llElements[m_llCurrent].next = m_llSize;
        ++m_llSize;
        return el.value;
      }
    }
  }
}

template<typename _Scalar,typename _Index>
_Scalar& AmbiVector<_Scalar,_Index>::coeff(_Index i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    eigen_assert(m_mode==IsSparse);
    if ((m_llSize==0) || (i<llElements[m_llStart].index))
    {
      return m_zero;
    }
    else
    {
      Index elid = m_llStart;
      while (elid >= 0 && llElements[elid].index<i)
        elid = llElements[elid].next;

      if (llElements[elid].index==i)
        return llElements[m_llCurrent].value;
      else
        return m_zero;
    }
  }
}

/** Iterator over the nonzero coefficients */
template<typename _Scalar,typename _Index>
class AmbiVector<_Scalar,_Index>::Iterator
{
  public:
    typedef _Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** Default constructor
      * \param vec the vector on which we iterate
      * \param epsilon the minimal value used to prune zero coefficients.
      * In practice, all coefficients having a magnitude smaller than \a epsilon
      * are skipped.
      */
Don Gagne's avatar
Don Gagne committed
291
    Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
LM's avatar
LM committed
292 293
      : m_vector(vec)
    {
Don Gagne's avatar
Don Gagne committed
294
      using std::abs;
LM's avatar
LM committed
295 296 297 298 299 300 301 302 303 304 305 306 307
      m_epsilon = epsilon;
      m_isDense = m_vector.m_mode==IsDense;
      if (m_isDense)
      {
        m_currentEl = 0;   // this is to avoid a compilation warning
        m_cachedValue = 0; // this is to avoid a compilation warning
        m_cachedIndex = m_vector.m_start-1;
        ++(*this);
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        m_currentEl = m_vector.m_llStart;
Don Gagne's avatar
Don Gagne committed
308
        while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
LM's avatar
LM committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
          m_currentEl = llElements[m_currentEl].next;
        if (m_currentEl<0)
        {
          m_cachedValue = 0; // this is to avoid a compilation warning
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
    }

    Index index() const { return m_cachedIndex; }
    Scalar value() const { return m_cachedValue; }

    operator bool() const { return m_cachedIndex>=0; }

    Iterator& operator++()
    {
Don Gagne's avatar
Don Gagne committed
330
      using std::abs;
LM's avatar
LM committed
331 332 333 334
      if (m_isDense)
      {
        do {
          ++m_cachedIndex;
Don Gagne's avatar
Don Gagne committed
335
        } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
LM's avatar
LM committed
336 337 338 339 340 341 342 343 344 345
        if (m_cachedIndex<m_vector.m_end)
          m_cachedValue = m_vector.m_buffer[m_cachedIndex];
        else
          m_cachedIndex=-1;
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        do {
          m_currentEl = llElements[m_currentEl].next;
Don Gagne's avatar
Don Gagne committed
346
        } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<m_epsilon);
LM's avatar
LM committed
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        if (m_currentEl<0)
        {
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
      return *this;
    }

  protected:
    const AmbiVector& m_vector; // the target vector
    Index m_currentEl;            // the current element in sparse/linked-list mode
    RealScalar m_epsilon;       // epsilon used to prune zero coefficients
    Index m_cachedIndex;          // current coordinate
    Scalar m_cachedValue;       // current value
    bool m_isDense;             // mode of the vector
};

Don Gagne's avatar
Don Gagne committed
369 370 371
} // end namespace internal

} // end namespace Eigen
LM's avatar
LM committed
372 373

#endif // EIGEN_AMBIVECTOR_H