PolygonCalculus.cc 22.2 KB
Newer Older
1
#include "PolygonCalculus.h"
2 3 4 5 6 7
#include "PlanimetryCalculus.h"
#include "OptimisationTools.h"

#include <QVector3D>

#include <functional>
8

9 10
namespace PolygonCalculus {
    namespace  {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
11 12 13 14 15 16 17 18
        bool isReflexVertex(const QPolygonF& polygon, const QPointF  *vertex) {
            // Original Code from SurveyComplexItem::_VertexIsReflex()
            auto vertexBefore = vertex == polygon.begin() ? polygon.end() - 1 : vertex - 1;
            auto vertexAfter = vertex == polygon.end() - 1 ? polygon.begin() : vertex + 1;
            auto area = ( ((vertex->x() - vertexBefore->x())*(vertexAfter->y() - vertexBefore->y()))
                         -((vertexAfter->x() - vertexBefore->x())*(vertex->y() - vertexBefore->y())));
            return area > 0;
        }
19 20 21

    } // end anonymous namespace

Valentin Platzgummer's avatar
Valentin Platzgummer committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    /*!
     * \fn bool containsPath(QPolygonF polygon, const QPointF &c1, const QPointF &c2)
     * Returns true if the shortest path between the two coordinates is not fully inside the \a area.
     *
     * \sa QPointF, QPolygonF
     */
    bool containsPath(QPolygonF polygon, const QPointF &c1, const QPointF &c2)
    {
        if ( !polygon.isEmpty()) {
            if (   !polygon.containsPoint(c1, Qt::FillRule::OddEvenFill)
                || !polygon.containsPoint(c2, Qt::FillRule::OddEvenFill))
                return false;

            QList<QPointF>   intersectionList;
            QLineF line;
            line.setP1(c1);
            line.setP2(c2);
            PlanimetryCalculus::IntersectList intersectTypeList;

            bool retValue = PlanimetryCalculus::intersects(polygon, line, intersectionList, intersectTypeList);
            if (!retValue) {
                for (int i = 0; i < intersectTypeList.size(); i++) {
                    PlanimetryCalculus::IntersectType type = intersectTypeList[i];
                    if (   type == PlanimetryCalculus::EdgeEdgeIntersection
                        || type == PlanimetryCalculus::Error)
                            return false;
                }

            }
            return true;
        } else {
            return false;
        }
    }

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    /*!
     * \fn int closestVertexIndex(const QPolygonF &polygon, const QPointF &coordinate)
     * Returns the vertex index of \a polygon which has the least distance to \a coordinate.
     *
     * \sa QPointF, QPolygonF
     */
    int closestVertexIndex(const QPolygonF &polygon, const QPointF &coordinate)
    {
        if (polygon.size() == 0) {
            qWarning("Path is empty!");
            return -1;
        }else if (polygon.size() == 1) {
            return 0;
        }else {
            int index = 0; // the index of the closest vertex
            double min_dist = PlanimetryCalculus::distance(coordinate, polygon[index]);
            for(int i = 1; i < polygon.size(); i++){
                double dist = PlanimetryCalculus::distance(coordinate, polygon[i]);
                if (dist < min_dist){
                    min_dist = dist;
                    index = i;
                }
            }
            return index;
        }
    }

84
    /*!auto distance
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
     * \fn  QPointF closestVertex(const QPolygonF &polygon, const QPointF &coordinate);
     *  Returns the vertex of \a polygon with the least distance to \a coordinate.
     *
     * \sa QPointF, QPolygonF
     */
    QPointF closestVertex(const QPolygonF &polygon, const QPointF &coordinate)
    {
        int index = closestVertexIndex(polygon, coordinate);
        if (index >=0 ) {
            return polygon[index];
        } else {
            return QPointF();
        }
    }

    /*!
     * \fn int nextPolygonIndex(int pathsize, int index)
     * Returns the index of the next vertex (of a polygon), which is \a index + 1 if \a index is smaller than \c {\a pathsize - 1},
     * or 0 if \a index equals \c {\a pathsize - 1}, or -1 if the \a index is out of bounds.
     * \note \a pathsize is usually obtained by invoking polygon.size()
     */
Valentin Platzgummer's avatar
Valentin Platzgummer committed
106
    int nextVertexIndex(int pathsize, int index)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    {
        if (index >= 0 && index < pathsize-1) {
            return index + 1;
        } else if (index == pathsize-1) {
            return 0;
        } else {
            qWarning("nextPolygonIndex(): Index out of bounds! index:count = %i:%i", index, pathsize);
            return -1;
        }
    }

    /*!
     * \fn int previousPolygonIndex(int pathsize, int index)
     * Returns the index of the previous vertex (of a polygon), which is \a index - 1 if \a index is larger 0,
     * or \c {\a pathsize - 1} if \a index equals 0, or -1 if the \a index is out of bounds.
     * \note pathsize is usually obtained by invoking polygon.size()
     */
Valentin Platzgummer's avatar
Valentin Platzgummer committed
124
    int previousVertexIndex(int pathsize, int index)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    {
        if (index > 0 && index <pathsize) {
            return index - 1;
        } else if (index == 0) {
            return pathsize-1;
        } else {
            qWarning("previousVertexIndex(): Index out of bounds! index:count = %i:%i", index, pathsize);
            return -1;
        }
    }

    /*!
     * \fn JoinPolygonError joinPolygon(QPolygonF polygon1, QPolygonF polygon2, QPolygonF &joinedPolygon);
     * Joins \a polygon1 and \a polygon2 such that a \l {Simple Polygon} is created.
     * Stores the result inside \a joinedArea.
     * Returns \c NotSimplePolygon1 if \a polygon1 isn't a Simple Polygon, \c NotSimplePolygon2 if \a polygon2 isn't a Simple Polygon, \c Disjoind if the polygons are disjoint,
     * \c PathSizeLow if at least one polygon has a size samler than 3, or \c PolygonJoined on success.
     * The algorithm will be able to join the areas, if either their edges intersect with each other,
     * or one area is inside the other.
     * The algorithm assumes that \a joinedPolygon is empty.
     */
146
    JoinPolygonError join(QPolygonF polygon1, QPolygonF polygon2, QPolygonF &joinedPolygon)
147
    {
148
        using namespace PolygonCalculus;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        if (polygon1.size() >= 3 && polygon2.size() >= 3) {

            if ( !isSimplePolygon(polygon1) || !isSimplePolygon(polygon2)) {
                return JoinPolygonError::NotSimplePolygon;
            }
            if ( !hasClockwiseWinding(polygon1)) {
                reversePath(polygon1);
            }
            if ( !hasClockwiseWinding(polygon2)) {
                reversePath(polygon2);
            }

            const QPolygonF *walkerPoly    = &polygon1; // "walk" on this polygon towards higher indices
            const QPolygonF *crossPoly     = &polygon2; // check for crossings with this polygon while "walking"
                                                        // and swicht to this polygon on a intersection,
                                                        // continue to walk towards higher indices

            // begin with the first index which is not inside crosspoly, if all Vertices are inside crosspoly return crosspoly
            int startIndex = 0;
            bool crossContainsWalker = true;
            for (int i = 0; i < walkerPoly->size(); i++) {
                if ( !crossPoly->contains(walkerPoly->value(i)) ) {
                    crossContainsWalker = false;
                    startIndex = i;
                    break;
                }
            }

            if ( crossContainsWalker == true) {
                joinedPolygon.append(*crossPoly);
                return JoinPolygonError::PolygonJoined;
            }

            QPointF currentVertex    = walkerPoly->value(startIndex);
            QPointF startVertex      = currentVertex;
            // possible nextVertex (if no intersection between currentVertex and protoVertex with crossPoly)
185 186
            int nextVertexNumber      = nextVertexIndex(walkerPoly->size(), startIndex);
            QPointF protoNextVertex  = walkerPoly->value(nextVertexNumber);
187 188
            bool switchHappenedPreviously = false; // means switch between crossPoly and walkerPoly
            while (1) {
189
                //qDebug("nextVertexNumber: %i", nextVertexNumber);
190 191 192 193 194 195 196 197 198 199 200 201 202
                joinedPolygon.append(currentVertex);

                QLineF walkerPolySegment;
                walkerPolySegment.setP1(currentVertex);
                walkerPolySegment.setP2(protoNextVertex);

                QList<QPair<int, int>> neighbourList;
                QList<QPointF> intersectionList;
                //qDebug("IntersectionList.size() on init: %i", intersectionList.size());
                PlanimetryCalculus::intersects(*crossPoly, walkerPolySegment, intersectionList, neighbourList);

                //qDebug("IntersectionList.size(): %i", intersectionList.size());

203
                if (intersectionList.size() >= 1) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                    int minDistIndex = 0;

                    // find the vertex with the least distance to currentVertex
                    if (intersectionList.size() > 1) {
                        double minDist = PlanimetryCalculus::distance(currentVertex, intersectionList[minDistIndex]);
                        for (int i = 1; i < intersectionList.size(); i++) {
                            double currentDist = PlanimetryCalculus::distance(currentVertex, intersectionList[i]);

                            if ( minDist > currentDist ) {
                                minDist         = currentDist;
                                minDistIndex    = i;
                            }
                        }
                    }

                    //qDebug("MinDistIndex: %i", minDistIndex);
                    QPointF protoCurrentVertex = intersectionList.value(minDistIndex);
                    // If the currentVertex is a intersection point a intersection ocisSelfIntersectingcures with the
                    // crossPoly. This would cause unwanted switching of crossPoly and walkerPoly, thus intersections
                    // are only token in to account if they occur beyond a certain distance (_epsilonMeter) or no switching happend in the
                    // previous step.

                    if (switchHappenedPreviously == false){
                            //|| protoCurrentVertex.distanceTo(currentVertex) > _epsilonMeter) {
                        currentVertex                   = protoCurrentVertex;
                        QPair<int, int> neighbours      = neighbourList.value(minDistIndex);
                        protoNextVertex                 = crossPoly->value(neighbours.second);
231
                        nextVertexNumber                 = neighbours.second;
232 233 234 235 236 237 238 239

                        // switch walker and cross poly
                        const QPolygonF *temp   = walkerPoly;
                        walkerPoly              = crossPoly;
                        crossPoly               = temp;

                        switchHappenedPreviously = true;
                    } else {
240 241 242
                        currentVertex   = walkerPoly->value(nextVertexNumber);
                        nextVertexNumber = nextVertexIndex(walkerPoly->size(), nextVertexNumber);
                        protoNextVertex = walkerPoly->value(nextVertexNumber);
243 244 245 246 247

                        switchHappenedPreviously = false;
                    }

                } else {
248 249 250
                    currentVertex   = walkerPoly->value(nextVertexNumber);
                    nextVertexNumber = nextVertexIndex(walkerPoly->size(), nextVertexNumber);
                    protoNextVertex = walkerPoly->value(nextVertexNumber);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                }

                if (currentVertex == startVertex) {
                    if (polygon1.size() == joinedPolygon.size()) {
                        return JoinPolygonError::Disjoint;
                    } else {
                        return JoinPolygonError::PolygonJoined;
                    }
                }
            }

        } else {
            return JoinPolygonError::PathSizeLow;
        }
    }

    /*!
     * \fn bool isSimplePolygon(const QPolygonF &polygon);
     * Returns \c true if \a polygon is a \l {Simple Polygon}, \c false else.
     * \note A polygon is a Simple Polygon iff it is not self intersecting.
     */
    bool isSimplePolygon(const QPolygonF &polygon)
    {
        int i = 0;
        if (polygon.size() > 3) {
            // check if any edge of the area (formed by two adjacent vertices) intersects with any other edge of the area
            while(i < polygon.size()-1) {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
278
                double cCIntersectCounter = 0; // corner corner intersection counter
279
                QPointF refBeginCoordinate = polygon[i];
Valentin Platzgummer's avatar
Valentin Platzgummer committed
280
                QPointF refEndCoordinate = polygon[nextVertexIndex(polygon.size(), i)];
281 282 283
                QLineF refLine;
                refLine.setP1(refBeginCoordinate);
                refLine.setP2(refEndCoordinate);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
284
                int j = nextVertexIndex(polygon.size(), i);
285 286 287 288 289
                while(j < polygon.size()) {

                    QPointF intersectionPt;
                    QLineF iteratorLine;
                    iteratorLine.setP1(polygon[j]);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
290 291 292 293 294 295 296 297 298 299 300 301 302
                    iteratorLine.setP2(polygon[nextVertexIndex(polygon.size(), j)]);
                    PlanimetryCalculus::IntersectType intersectType;
                    PlanimetryCalculus::intersects(refLine, iteratorLine, intersectionPt, intersectType);
                    if ( intersectType == PlanimetryCalculus::CornerCornerIntersection) {
                        cCIntersectCounter++;
                        // max two corner corner intersections allowed, a specific coordinate can appear only once in a simple polygon
                    }
                    if ( cCIntersectCounter > 2
                         || intersectType == PlanimetryCalculus::EdgeEdgeIntersection
                         || intersectType == PlanimetryCalculus::EdgeCornerIntersection
                         || intersectType == PlanimetryCalculus::LinesEqual
                         || intersectType == PlanimetryCalculus::Error){
                        return false;
303
                    }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
304

305 306 307 308 309 310 311 312 313 314
                    j++;
                }
                i++;
            }
        }
        return true;
    }

    /*!
     * \fn bool hasClockwiseWinding(const QPolygonF &polygon)
315
     * Returns \c true if \a path has clockwiauto distancese winding, \c false else.
316 317 318 319 320 321 322 323 324 325
     */
    bool hasClockwiseWinding(const QPolygonF &polygon)
    {
        if (polygon.size() <= 2) {
            return false;
        }

        double sum = 0;
        for (int i=0; i <polygon.size(); i++) {
            QPointF coord1 = polygon[i];
Valentin Platzgummer's avatar
Valentin Platzgummer committed
326
            QPointF coord2 = polygon[nextVertexIndex(polygon.size(), i)];
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

            sum += (coord2.x() - coord1.x()) * (coord2.y() + coord1.y());
        }

        if (sum < 0.0)
            return false;

        return true;
    }

    /*!
     * \fn void reversePath(QPolygonF &polygon)
     * Reverses the path, i.e. changes the first Vertex with the last, the second with the befor last and so forth.
     */
    void reversePath(QPolygonF &polygon)
    {
        QPolygonF pathReversed;
        for (int i = 0; i < polygon.size(); i++) {
            pathReversed.prepend(polygon[i]);
        }
        polygon.clear();
        polygon.append(pathReversed);
    }

Valentin Platzgummer's avatar
Valentin Platzgummer committed
351 352 353 354 355
    /*!
     * \fn void offsetPolygon(QPolygonF &polygon, double offset)
     * Offsets a \a polygon by the given \a offset. The algorithm assumes that polygon is a \l {SimplePolygon}.
     */
    void offsetPolygon(QPolygonF &polygon, double offset)
356
    {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
357 358 359 360
        // Original code from QGCMapPolygon::offset()
        QPolygonF newPolygon;
        if (polygon.size() > 2) {

361
            // Walk the edges, offsetting by theauto distance specified distance
Valentin Platzgummer's avatar
Valentin Platzgummer committed
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            QList<QLineF> rgOffsetEdges;
            for (int i = 0; i < polygon.size(); i++) {
                int     nextIndex = nextVertexIndex(polygon.size(), i);
                QLineF  offsetEdge;
                QLineF  originalEdge(polygon[i], polygon[nextIndex]);

                QLineF workerLine = originalEdge;
                workerLine.setLength(offset);
                workerLine.setAngle(workerLine.angle() - 90.0);
                offsetEdge.setP1(workerLine.p2());

                workerLine.setPoints(originalEdge.p2(), originalEdge.p1()); bool             containsPath        (const QPointF &c1, const QPointF &c2, QPolygonF polygon);
                workerLine.setLength(offset);
                workerLine.setAngle(workerLine.angle() + 90.0);
                offsetEdge.setP2(workerLine.p2());

                rgOffsetEdges << offsetEdge;
            }
380

Valentin Platzgummer's avatar
Valentin Platzgummer committed
381 382 383 384 385 386 387 388 389 390 391 392 393
            // Intersect the offset edges to generate new vertices
            polygon.clear();
            QPointF         newVertex;
            for (int i=0; i<rgOffsetEdges.count(); i++) {
                int prevIndex = previousVertexIndex(rgOffsetEdges.size(), i);
                if (rgOffsetEdges[prevIndex].intersect(rgOffsetEdges[i], &newVertex) == QLineF::NoIntersection) {
                    // FIXME: Better error handling?
                    qWarning("Intersection failed");
                    return;
                }
                polygon.append(newVertex);
            }
        }
394 395
    }

Valentin Platzgummer's avatar
Valentin Platzgummer committed
396
    void decomposeToConvex(const QPolygonF &polygon, QList<QPolygonF> &convexPolygons)
397
    {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
398 399 400 401 402 403 404 405
        // Original Code SurveyComplexItem::_PolygonDecomposeConvex()
        // this follows "Mark Keil's Algorithm" https://mpen.ca/406/keil
        int decompSize = std::numeric_limits<int>::max();
        if (polygon.size() < 3) return;
        if (polygon.size() == 3) {
            convexPolygons << polygon;
            return;
        }
406

Valentin Platzgummer's avatar
Valentin Platzgummer committed
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        QList<QPolygonF> decomposedPolygonsMin{};

        for (const QPointF *vertex = polygon.begin(); vertex != polygon.end(); ++vertex)
        {
            // is vertex reflex?
            bool vertexIsReflex = isReflexVertex(polygon, vertex);

            if (!vertexIsReflex) continue;

            for (const QPointF *vertexOther = polygon.begin(); vertexOther != polygon.end(); ++vertexOther)
            {
                const QPointF *vertexBefore = vertex == polygon.begin() ? polygon.end() - 1 : vertex - 1;
                const QPointF *vertexAfter = vertex == polygon.end() - 1 ? polygon.begin() : vertex + 1;
                if (vertexOther == vertex) continue;
                if (vertexAfter == vertexOther) continue;
                if (vertexBefore == vertexOther) continue;
                bool canSee = containsPath(polygon, *vertex, *vertexOther);
                if (!canSee) continue;

                QPolygonF polyLeft;
                const QPointF *v = vertex;
                bool polyLeftContainsReflex = false;
                while ( v != vertexOther) {
                    if (v != vertex && isReflexVertex(polygon, v)) {
                        polyLeftContainsReflex = true;
                    }
                    polyLeft << *v;
                    ++v;
                    if (v == polygon.end()) v = polygon.begin();
                }
                polyLeft << *vertexOther;
                bool polyLeftValid = !(polyLeftContainsReflex && polyLeft.size() == 3);

                QPolygonF polyRight;
                v = vertexOther;
                bool polyRightContainsReflex = false;
                while ( v != vertex) {
                    if (v != vertex && isReflexVertex(polygon, v)) {
                        polyRightContainsReflex = true;
                    }
                    polyRight << *v;
                    ++v;
                    if (v == polygon.end()) v = polygon.begin();
                }
                polyRight << *vertex;
                auto polyRightValid = !(polyRightContainsReflex && polyRight.size() == 3);

                if (!polyLeftValid || ! polyRightValid) {
    //                decompSize = std::numeric_limits<int>::max();
                    continue;
                }

                // recursion
                QList<QPolygonF> polyLeftDecomposed{};
                decomposeToConvex(polyLeft, polyLeftDecomposed);
462

Valentin Platzgummer's avatar
Valentin Platzgummer committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                QList<QPolygonF> polyRightDecomposed{};
                decomposeToConvex(polyRight, polyRightDecomposed);

                // compositon
                int subSize = polyLeftDecomposed.size() + polyRightDecomposed.size();
                if (   (polyLeftContainsReflex && polyLeftDecomposed.size() == 1)
                    || (polyRightContainsReflex && polyRightDecomposed.size() == 1))
                {
                    // don't accept polygons that contian reflex vertices and were not split
                    subSize = std::numeric_limits<int>::max();
                }
                if (subSize < decompSize) {
                    decompSize = subSize;
                    decomposedPolygonsMin = polyLeftDecomposed + polyRightDecomposed;
                }
478
            }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
479 480 481 482 483
        }

        // assemble output
        if (decomposedPolygonsMin.size() > 0) {
            convexPolygons << decomposedPolygonsMin;
484
        } else {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
485
            convexPolygons << polygon;
486
        }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
487 488

        return;
489
    }
Valentin Platzgummer's avatar
Valentin Platzgummer committed
490 491 492 493 494 495

    bool shortestPath(const QPolygonF &polygon, const QPointF &startVertex, const QPointF &endVertex, QList<QPointF> &shortestPath)
    {
        if (    polygon.containsPoint(startVertex, Qt::FillRule::OddEvenFill)
             && polygon.containsPoint(endVertex, Qt::FillRule::OddEvenFill)) {
            // lambda
496
            std::function<double(const QPointF &, const QPointF &)> distance = [polygon](const QPointF &p1,  const QPointF &p2) -> double {
Valentin Platzgummer's avatar
Valentin Platzgummer committed
497 498 499 500 501 502 503 504 505 506 507 508 509 510
                if (containsPath(polygon, p1, p2)){
                    double dx = p1.x()-p2.x();
                    double dy = p1.y()-p2.y();
                    return sqrt(dx*dx+dy*dy);
                } else
                    return std::numeric_limits<double>::infinity();
            };

            QList<QPointF> elementList;
            elementList.append(startVertex);
            elementList.append(endVertex);
            for (int i = 0; i < polygon.size(); i++) {
                elementList.append(polygon[i]);
            }
511 512
            qWarning("Hi");
            return OptimisationTools::dijkstraAlgorithm(elementList, 0, 1, shortestPath, distance);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
513 514 515 516 517
        } else {
            return false;
        }
    }

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    QVector3DList toQVector3DList(const QPolygonF &polygon)
    {
        QVector3DList list;
        for ( auto vertex : polygon )
            list.append(QVector3D(vertex));

        return list;
    }

    QPolygonF toQPolygonF(const QPointFList &listF)
    {
        QPolygonF polygon;
        for ( auto vertex : listF )
            polygon.append(vertex);

        return polygon;
    }

    QPointFList toQPointFList(const QPolygonF &polygon)
    {
        QPointFList listF;
        for ( auto vertex : polygon )
            listF.append(vertex);

        return listF;
    }

Valentin Platzgummer's avatar
Valentin Platzgummer committed
545

546 547
} // end PolygonCalculus namespace