AlignedBox.h 6.75 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway

/** \geometry_module \ingroup Geometry_Module
  * \nonstableyet
  *
  * \class AlignedBox
  *
  * \brief An axis aligned box
  *
  * \param _Scalar the type of the scalar coefficients
  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *
  * This class represents an axis aligned box as a pair of the minimal and maximal corners.
  */
template <typename _Scalar, int _AmbientDim>
class AlignedBox
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
  enum { AmbientDimAtCompileTime = _AmbientDim };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;

  /** Default constructor initializing a null box. */
  inline explicit AlignedBox()
  { if (AmbientDimAtCompileTime!=Dynamic) setNull(); }

  /** Constructs a null box with \a _dim the dimension of the ambient space. */
  inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
  { setNull(); }

  /** Constructs a box with extremities \a _min and \a _max. */
  inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}

  /** Constructs a box containing a single point \a p. */
  inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}

  ~AlignedBox() {}

  /** \returns the dimension in which the box holds */
  inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }

  /** \returns true if the box is null, i.e, empty. */
  inline bool isNull() const { return (m_min.cwise() > m_max).any(); }

  /** Makes \c *this a null/empty box. */
  inline void setNull()
  {
    m_min.setConstant( std::numeric_limits<Scalar>::max());
    m_max.setConstant(-std::numeric_limits<Scalar>::max());
  }

  /** \returns the minimal corner */
  inline const VectorType& min() const { return m_min; }
  /** \returns a non const reference to the minimal corner */
  inline VectorType& min() { return m_min; }
  /** \returns the maximal corner */
  inline const VectorType& max() const { return m_max; }
  /** \returns a non const reference to the maximal corner */
  inline VectorType& max() { return m_max; }

  /** \returns true if the point \a p is inside the box \c *this. */
  inline bool contains(const VectorType& p) const
  { return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }

  /** \returns true if the box \a b is entirely inside the box \c *this. */
  inline bool contains(const AlignedBox& b) const
  { return (m_min.cwise()<=b.min()).all() && (b.max().cwise()<=m_max).all(); }

  /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
  inline AlignedBox& extend(const VectorType& p)
  { m_min = m_min.cwise().min(p); m_max = m_max.cwise().max(p); return *this; }

  /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
  inline AlignedBox& extend(const AlignedBox& b)
  { m_min = m_min.cwise().min(b.m_min); m_max = m_max.cwise().max(b.m_max); return *this; }

  /** Clamps \c *this by the box \a b and returns a reference to \c *this. */
  inline AlignedBox& clamp(const AlignedBox& b)
  { m_min = m_min.cwise().max(b.m_min); m_max = m_max.cwise().min(b.m_max); return *this; }

  /** Translate \c *this by the vector \a t and returns a reference to \c *this. */
  inline AlignedBox& translate(const VectorType& t)
  { m_min += t; m_max += t; return *this; }

  /** \returns the squared distance between the point \a p and the box \c *this,
    * and zero if \a p is inside the box.
    * \sa exteriorDistance()
    */
  inline Scalar squaredExteriorDistance(const VectorType& p) const;

  /** \returns the distance between the point \a p and the box \c *this,
    * and zero if \a p is inside the box.
    * \sa squaredExteriorDistance()
    */
  inline Scalar exteriorDistance(const VectorType& p) const
  { return ei_sqrt(squaredExteriorDistance(p)); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<AlignedBox,
           AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
  {
    return typename internal::cast_return_type<AlignedBox,
                    AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
  {
    m_min = other.min().template cast<Scalar>();
    m_max = other.max().template cast<Scalar>();
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
  { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }

protected:

  VectorType m_min, m_max;
};

template<typename Scalar,int AmbiantDim>
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
{
  Scalar dist2 = 0.;
  Scalar aux;
  for (int k=0; k<dim(); ++k)
  {
    if ((aux = (p[k]-m_min[k]))<0.)
      dist2 += aux*aux;
    else if ( (aux = (m_max[k]-p[k]))<0. )
      dist2 += aux*aux;
  }
  return dist2;
}