Newer
Older
Valentin Platzgummer
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#include <algorithm>
#include <iostream>
#include "geometry.h"
#include <mapbox/geometry.hpp>
#include <mapbox/polylabel.hpp>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include "clipper/clipper.hpp"
#define CLIPPER_SCALE 1000000
#ifndef NDEBUG
//#define SNAKE_SHOW_TIME
#endif
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(bg::cs::cartesian)
namespace geometry {
static const IntType stdScale = 1000000;
//=========================================================================
// Geometry stuff.
//=========================================================================
void polygonCenter(const FPolygon &polygon, FPoint ¢er) {
using namespace mapbox;
if (polygon.outer().empty())
return;
mapbox::geometry::polygon<double> p;
mapbox::geometry::linear_ring<double> lr1;
for (size_t i = 0; i < polygon.outer().size(); ++i) {
mapbox::geometry::point<double> vertex(polygon.outer()[i].get<0>(),
polygon.outer()[i].get<1>());
lr1.push_back(vertex);
}
p.push_back(lr1);
mapbox::geometry::point<double> c = polylabel(p);
center.set<0>(c.x);
center.set<1>(c.y);
}
bool minimalBoundingBox(const FPolygon &polygon, BoundingBox &minBBox) {
/*
Find the minimum-area bounding box of a set of 2D points
The input is a 2D convex hull, in an Nx2 numpy array of x-y co-ordinates.
The first and last points points must be the same, making a closed polygon.
This program finds the rotation angles of each edge of the convex polygon,
then tests the area of a bounding box aligned with the unique angles in
90 degrees of the 1st Quadrant.
Returns the
Tested with Python 2.6.5 on Ubuntu 10.04.4 (original version)
Results verified using Matlab
Copyright (c) 2013, David Butterworth, University of Queensland
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Willow Garage, Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
if (polygon.outer().empty() || polygon.outer().size() < 3)
return false;
FPolygon convex_hull;
bg::convex_hull(polygon, convex_hull);
// cout << "Convex hull: " << bg::wkt<BoostPolygon2D>(convex_hull) << endl;
//# Compute edges (x2-x1,y2-y1)
std::vector<FPoint> edges;
const auto &convex_hull_outer = convex_hull.outer();
for (long i = 0; i < long(convex_hull_outer.size()) - 1; ++i) {
FPoint p1 = convex_hull_outer.at(i);
FPoint p2 = convex_hull_outer.at(i + 1);
double edge_x = p2.get<0>() - p1.get<0>();
double edge_y = p2.get<1>() - p1.get<1>();
edges.push_back(FPoint{edge_x, edge_y});
}
// cout << "Edges: ";
// for (auto e : edges)
// cout << e.get<0>() << " " << e.get<1>() << ",";
// cout << endl;
// Calculate unique edge angles atan2(y/x)
double angle_scale = 1e3;
std::set<long> angles_long;
for (auto vertex : edges) {
double angle = std::fmod(atan2(vertex.get<1>(), vertex.get<0>()), M_PI / 2);
angle =
angle < 0 ? angle + M_PI / 2 : angle; // want strictly positive answers
angles_long.insert(long(round(angle * angle_scale)));
}
std::vector<double> edge_angles;
for (auto a : angles_long)
edge_angles.push_back(double(a) / angle_scale);
// cout << "Unique angles: ";
// for (auto e : edge_angles)
// cout << e*180/M_PI << ",";
// cout << endl;
double min_area = std::numeric_limits<double>::infinity();
// Test each angle to find bounding box with smallest area
// print "Testing", len(edge_angles), "possible rotations for bounding box...
// \n"
for (double angle : edge_angles) {
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(angle * 180 /
M_PI);
FPolygon hull_rotated;
bg::transform(convex_hull, hull_rotated, rotate);
// cout << "Convex hull rotated: " << bg::wkt<BoostPolygon2D>(hull_rotated)
// << endl;
bg::model::box<FPoint> box;
bg::envelope(hull_rotated, box);
// cout << "Bounding box: " <<
// bg::wkt<bg::model::box<BoostPoint2D>>(box) << endl;
//# print "Rotated hull points are \n", rot_points
FPoint min_corner = box.min_corner();
FPoint max_corner = box.max_corner();
double min_x = min_corner.get<0>();
double max_x = max_corner.get<0>();
double min_y = min_corner.get<1>();
double max_y = max_corner.get<1>();
// cout << "min_x: " << min_x << endl;
// cout << "max_x: " << max_x << endl;
// cout << "min_y: " << min_y << endl;
// cout << "max_y: " << max_y << endl;
// Calculate height/width/area of this bounding rectangle
double width = max_x - min_x;
double height = max_y - min_y;
double area = width * height;
// cout << "Width: " << width << endl;
// cout << "Height: " << height << endl;
// cout << "area: " << area << endl;
// cout << "angle: " << angle*180/M_PI << endl;
// Store the smallest rect found first (a simple convex hull might have 2
// answers with same area)
if (area < min_area) {
min_area = area;
minBBox.angle = angle;
minBBox.width = width;
minBBox.height = height;
minBBox.corners.clear();
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, max_y});
minBBox.corners.outer().push_back(FPoint{max_x, min_y});
minBBox.corners.outer().push_back(FPoint{min_x, min_y});
}
// cout << endl << endl;
}
// Transform corners of minimal bounding box.
trans::rotate_transformer<bg::degree, double, 2, 2> rotate(-minBBox.angle *
180 / M_PI);
FPolygon rotated_polygon;
bg::transform(minBBox.corners, rotated_polygon, rotate);
minBBox.corners = rotated_polygon;
return true;
}
void offsetPolygon(const FPolygon &polygon, FPolygon &polygonOffset,
double offset) {
bg::strategy::buffer::distance_symmetric<double> distance_strategy(offset);
bg::strategy::buffer::join_miter join_strategy(3);
bg::strategy::buffer::end_flat end_strategy;
bg::strategy::buffer::point_square point_strategy;
bg::strategy::buffer::side_straight side_strategy;
bg::model::multi_polygon<FPolygon> result;
bg::buffer(polygon, result, distance_strategy, side_strategy, join_strategy,
end_strategy, point_strategy);
if (result.size() > 0)
polygonOffset = result[0];
}
void graphFromPolygon(const FPolygon &polygon, const FLineString &vertices,
Matrix<double> &graph) {
size_t n = graph.n();
for (size_t i = 0; i < n; ++i) {
FPoint v1 = vertices[i];
for (size_t j = i + 1; j < n; ++j) {
FPoint v2 = vertices[j];
FLineString path{v1, v2};
double distance = 0;
if (!bg::within(path, polygon))
distance = std::numeric_limits<double>::infinity();
else
distance = bg::length(path);
graph(i, j) = distance;
graph(j, i) = distance;
}
}
}
bool toDistanceMatrix(Matrix<double> &graph) {
size_t n = graph.n();
auto distance = [&graph](size_t i, size_t j) -> double {
return graph(i, j);
};
for (size_t i = 0; i < n; ++i) {
for (size_t j = i + 1; j < n; ++j) {
double d = graph(i, j);
if (!std::isinf(d))
continue;
std::vector<size_t> path;
if (!dijkstraAlgorithm(n, i, j, path, d, distance)) {
return false;
}
// cout << "(" << i << "," << j << ") d: " << d << endl;
// cout << "Path size: " << path.size() << endl;
// for (auto idx : path)
// cout << idx << " ";
// cout << endl;
graph(i, j) = d;
graph(j, i) = d;
}
}
return true;
}
bool joinedArea(const FPolygon &mArea, const FPolygon &sArea,
const FPolygon &corridor, FPolygon &jArea,
std::string &errorString) {
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(mArea, sArea) ? true : false;
bool corridorValid = corridor.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if (bg::intersects(corridor, mArea)) {
// Corridor overlaping with service area?
if (bg::intersects(corridor, sArea)) {
corridor_is_connection = true;
}
}
}
// Are areas joinable?
std::deque<FPolygon> sol;
FPolygon partialArea = mArea;
if (overlapingSerMeas) {
if (corridor_is_connection) {
bg::union_(partialArea, corridor, sol);
}
} else if (corridor_is_connection) {
bg::union_(partialArea, corridor, sol);
} else {
std::stringstream ss;
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas are not overlapping." << std::endl;
ss << "Measurement area:";
bg::for_each_point(mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, sArea, sol);
if (sol.size() > 0) {
jArea = sol[0];
} else {
std::stringstream ss;
auto printPoint = [&ss](const FPoint &p) {
ss << " (" << p.get<0>() << ", " << p.get<1>() << ")";
};
ss << "Areas not joinable." << std::endl;
ss << "Measurement area:";
bg::for_each_point(mArea, printPoint);
ss << std::endl;
ss << "Service area:";
bg::for_each_point(sArea, printPoint);
ss << std::endl;
ss << "Corridor:";
bg::for_each_point(corridor, printPoint);
ss << std::endl;
errorString = ss.str();
return false;
}
return true;
}
bool joinedArea(const std::vector<FPolygon *> &areas, FPolygon &joinedArea) {
if (areas.size() < 1)
return false;
joinedArea = *areas[0];
std::deque<std::size_t> idxList;
for (size_t i = 1; i < areas.size(); ++i)
idxList.push_back(i);
std::deque<FPolygon> sol;
while (idxList.size() > 0) {
bool success = false;
for (auto it = idxList.begin(); it != idxList.end(); ++it) {
bg::union_(joinedArea, *areas[*it], sol);
if (sol.size() > 0) {
joinedArea = sol[0];
sol.clear();
idxList.erase(it);
success = true;
break;
}
}
if (!success)
return false;
}
return true;
}
BoundingBox::BoundingBox() : width(0), height(0), angle(0) {}
void BoundingBox::clear() {
width = 0;
height = 0;
angle = 0;
corners.clear();
}
FPoint int2Float(const IPoint &ip) { return int2Float(ip, stdScale); }
FPoint int2Float(const IPoint &ip, IntType scale) {
return FPoint{FloatType(ip.get<0>()) / scale, FloatType(ip.get<1>()) / scale};
}
IPoint float2Int(const FPoint &ip) { return float2Int(ip, stdScale); }
IPoint float2Int(const FPoint &ip, IntType scale) {
return IPoint{IntType(std::llround(ip.get<0>() * scale)),
IntType(std::llround(ip.get<1>() * scale))};
}
bool dijkstraAlgorithm(size_t numElements, size_t startIndex, size_t endIndex,
std::vector<size_t> &elementPath, double &length,
std::function<double(size_t, size_t)> distanceDij) {
if (startIndex >= numElements || endIndex >= numElements) {
length = std::numeric_limits<double>::infinity();
return false;
} else if (endIndex == startIndex) {
length = 0;
elementPath.push_back(startIndex);
return true;
}
// Node struct
// predecessorIndex is the index of the predecessor node
// (nodeList[predecessorIndex]) distance is the distance between the node and
// the start node node number is stored by the position in nodeList
struct Node {
std::size_t predecessorIndex = std::numeric_limits<std::size_t>::max();
double distance = std::numeric_limits<double>::infinity();
};
// The list with all Nodes (elements)
std::vector<Node> nodeList(numElements);
// This list will be initalized with indices referring to the elements of
// nodeList. Elements will be successively remove during the execution of the
// Dijkstra Algorithm.
std::vector<size_t> workingSet(numElements);
// append elements to node list
for (size_t i = 0; i < numElements; ++i)
workingSet[i] = i;
nodeList[startIndex].distance = 0;
// Dijkstra Algorithm
// https://de.wikipedia.org/wiki/Dijkstra-Algorithmus
while (workingSet.size() > 0) {
// serach Node with minimal distance
auto minDist = std::numeric_limits<double>::infinity();
std::size_t minDistIndex_WS =
std::numeric_limits<std::size_t>::max(); // WS = workinSet
for (size_t i = 0; i < workingSet.size(); ++i) {
const auto nodeIndex = workingSet.at(i);
const auto dist = nodeList.at(nodeIndex).distance;
if (dist < minDist) {
minDist = dist;
minDistIndex_WS = i;
}
}
if (minDistIndex_WS == std::numeric_limits<std::size_t>::max())
return false;
size_t indexU_NL = workingSet.at(minDistIndex_WS); // NL = nodeList
workingSet.erase(workingSet.begin() + minDistIndex_WS);
if (indexU_NL == endIndex) // shortest path found
break;
const auto distanceU = nodeList.at(indexU_NL).distance;
// update distance
for (size_t i = 0; i < workingSet.size(); ++i) {
auto indexV_NL = workingSet[i]; // NL = nodeList
Node *v = &nodeList[indexV_NL];
auto dist = distanceDij(indexU_NL, indexV_NL);
// is ther an alternative path which is shorter?
auto alternative = distanceU + dist;
if (alternative < v->distance) {
v->distance = alternative;
v->predecessorIndex = indexU_NL;
}
}
}
// end Djikstra Algorithm
// reverse assemble path
auto e = endIndex;
length = nodeList[e].distance;
while (true) {
if (e == std::numeric_limits<std::size_t>::max()) {
if (elementPath.size() > 0 &&
elementPath[0] == startIndex) { // check if starting point was reached
break;
} else { // some error
length = std::numeric_limits<double>::infinity();
elementPath.clear();
return false;
}
} else {
elementPath.insert(elementPath.begin(), e);
// Update Node
e = nodeList[e].predecessorIndex;
}
}
return true;
}
bool shortestPathFromGraph(const Matrix<double> &graph, const size_t startIndex,
const size_t endIndex,
std::vector<size_t> &pathIdx) {
if (!std::isinf(graph(startIndex, endIndex))) {
pathIdx.push_back(startIndex);
pathIdx.push_back(endIndex);
} else {
auto distance = [&graph](size_t i, size_t j) -> double {
return graph(i, j);
};
double d = 0;
if (!dijkstraAlgorithm(graph.n(), startIndex, endIndex, pathIdx, d,
distance)) {
return false;
}
}
return true;
}
} // namespace geometry
bool boost::geometry::model::operator==(::geometry::FPoint &p1,
::geometry::FPoint &p2) {
return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>());
}
bool boost::geometry::model::operator!=(::geometry::FPoint &p1,
::geometry::FPoint &p2) {
return !(p1 == p2);
}
bool boost::geometry::model::operator==(::geometry::IPoint &p1,
::geometry::IPoint &p2) {
return (p1.get<0>() == p2.get<0>()) && (p1.get<1>() == p2.get<1>());
}
bool boost::geometry::model::operator!=(::geometry::IPoint &p1,
::geometry::IPoint &p2) {
return !(p1 == p2);
}