SparseLU_SupernodalMatrix.h 9.4 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H

namespace Eigen {
namespace internal {

/** \ingroup SparseLU_Module
 * \brief a class to manipulate the L supernodal factor from the SparseLU factorization
 * 
 * This class  contain the data to easily store 
 * and manipulate the supernodes during the factorization and solution phase of Sparse LU. 
 * Only the lower triangular matrix has supernodes.
 * 
 * NOTE : This class corresponds to the SCformat structure in SuperLU
 * 
 */
/* TODO
 * InnerIterator as for sparsematrix 
 * SuperInnerIterator to iterate through all supernodes 
 * Function for triangular solve
 */
template <typename _Scalar, typename _Index>
class MappedSuperNodalMatrix
{
  public:
    typedef _Scalar Scalar; 
    typedef _Index Index;
    typedef Matrix<Index,Dynamic,1> IndexVector; 
    typedef Matrix<Scalar,Dynamic,1> ScalarVector;
  public:
    MappedSuperNodalMatrix()
    {
      
    }
    MappedSuperNodalMatrix(Index m, Index n,  ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, 
             IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
    {
      setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
    }
    
    ~MappedSuperNodalMatrix()
    {
      
    }
    /**
     * Set appropriate pointers for the lower triangular supernodal matrix
     * These infos are available at the end of the numerical factorization
     * FIXME This class will be modified such that it can be use in the course 
     * of the factorization.
     */
    void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, 
             IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
    {
      m_row = m;
      m_col = n; 
      m_nzval = nzval.data(); 
      m_nzval_colptr = nzval_colptr.data(); 
      m_rowind = rowind.data(); 
      m_rowind_colptr = rowind_colptr.data(); 
      m_nsuper = col_to_sup(n); 
      m_col_to_sup = col_to_sup.data(); 
      m_sup_to_col = sup_to_col.data(); 
    }
    
    /**
     * Number of rows
     */
    Index rows() { return m_row; }
    
    /**
     * Number of columns
     */
    Index cols() { return m_col; }
    
    /**
     * Return the array of nonzero values packed by column
     * 
     * The size is nnz
     */
    Scalar* valuePtr() {  return m_nzval; }
    
    const Scalar* valuePtr() const 
    {
      return m_nzval; 
    }
    /**
     * Return the pointers to the beginning of each column in \ref valuePtr()
     */
    Index* colIndexPtr()
    {
      return m_nzval_colptr; 
    }
    
    const Index* colIndexPtr() const
    {
      return m_nzval_colptr; 
    }
    
    /**
     * Return the array of compressed row indices of all supernodes
     */
    Index* rowIndex()  { return m_rowind; }
    
    const Index* rowIndex() const
    {
      return m_rowind; 
    }
    
    /**
     * Return the location in \em rowvaluePtr() which starts each column
     */
    Index* rowIndexPtr() { return m_rowind_colptr; }
    
    const Index* rowIndexPtr() const 
    {
      return m_rowind_colptr; 
    }
    
    /** 
     * Return the array of column-to-supernode mapping 
     */
    Index* colToSup()  { return m_col_to_sup; }
    
    const Index* colToSup() const
    {
      return m_col_to_sup;       
    }
    /**
     * Return the array of supernode-to-column mapping
     */
    Index* supToCol() { return m_sup_to_col; }
    
    const Index* supToCol() const 
    {
      return m_sup_to_col;
    }
    
    /**
     * Return the number of supernodes
     */
    Index nsuper() const 
    {
      return m_nsuper; 
    }
    
    class InnerIterator; 
    template<typename Dest>
    void solveInPlace( MatrixBase<Dest>&X) const;
    
      
      
    
  protected:
    Index m_row; // Number of rows
    Index m_col; // Number of columns 
    Index m_nsuper; // Number of supernodes 
    Scalar* m_nzval; //array of nonzero values packed by column
    Index* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j 
    Index* m_rowind; // Array of compressed row indices of rectangular supernodes
    Index* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
    Index* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
    Index* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
    
  private :
};

/**
  * \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L
  * 
  */
template<typename Scalar, typename Index>
class MappedSuperNodalMatrix<Scalar,Index>::InnerIterator
{
  public:
     InnerIterator(const MappedSuperNodalMatrix& mat, Index outer)
      : m_matrix(mat),
        m_outer(outer), 
        m_supno(mat.colToSup()[outer]),
        m_idval(mat.colIndexPtr()[outer]),
        m_startidval(m_idval),
        m_endidval(mat.colIndexPtr()[outer+1]),
192 193
        m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]),
        m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1])
Don Gagne's avatar
Don Gagne committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    {}
    inline InnerIterator& operator++()
    { 
      m_idval++; 
      m_idrow++;
      return *this;
    }
    inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
    
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
    
    inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
    inline Index row() const { return index(); }
    inline Index col() const { return m_outer; }
    
    inline Index supIndex() const { return m_supno; }
    
    inline operator bool() const 
    { 
      return ( (m_idval < m_endidval) && (m_idval >= m_startidval)
                && (m_idrow < m_endidrow) );
    }
    
  protected:
    const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix 
    const Index m_outer;                    // Current column 
    const Index m_supno;                    // Current SuperNode number
    Index m_idval;                          // Index to browse the values in the current column
    const Index m_startidval;               // Start of the column value
    const Index m_endidval;                 // End of the column value
    Index m_idrow;                          // Index to browse the row indices 
    Index m_endidrow;                       // End index of row indices of the current column
};

/**
 * \brief Solve with the supernode triangular matrix
 * 
 */
template<typename Scalar, typename Index>
template<typename Dest>
void MappedSuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) const
{
    Index n = X.rows(); 
    Index nrhs = X.cols(); 
    const Scalar * Lval = valuePtr();                 // Nonzero values 
239
    Matrix<Scalar,Dynamic,Dynamic, ColMajor> work(n, nrhs);     // working vector
Don Gagne's avatar
Don Gagne committed
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    work.setZero();
    for (Index k = 0; k <= nsuper(); k ++)
    {
      Index fsupc = supToCol()[k];                    // First column of the current supernode 
      Index istart = rowIndexPtr()[fsupc];            // Pointer index to the subscript of the current column
      Index nsupr = rowIndexPtr()[fsupc+1] - istart;  // Number of rows in the current supernode
      Index nsupc = supToCol()[k+1] - fsupc;          // Number of columns in the current supernode
      Index nrow = nsupr - nsupc;                     // Number of rows in the non-diagonal part of the supernode
      Index irow;                                     //Current index row
      
      if (nsupc == 1 )
      {
        for (Index j = 0; j < nrhs; j++)
        {
          InnerIterator it(*this, fsupc);
          ++it; // Skip the diagonal element
          for (; it; ++it)
          {
            irow = it.row();
            X(irow, j) -= X(fsupc, j) * it.value();
          }
        }
      }
      else
      {
        // The supernode has more than one column 
        Index luptr = colIndexPtr()[fsupc]; 
        Index lda = colIndexPtr()[fsupc+1] - luptr;
        
        // Triangular solve 
270 271
        Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
        Map< Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) ); 
Don Gagne's avatar
Don Gagne committed
272 273 274
        U = A.template triangularView<UnitLower>().solve(U); 
        
        // Matrix-vector product 
275
        new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
Don Gagne's avatar
Don Gagne committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        work.block(0, 0, nrow, nrhs) = A * U; 
        
        //Begin Scatter 
        for (Index j = 0; j < nrhs; j++)
        {
          Index iptr = istart + nsupc; 
          for (Index i = 0; i < nrow; i++)
          {
            irow = rowIndex()[iptr]; 
            X(irow, j) -= work(i, j); // Scatter operation
            work(i, j) = Scalar(0); 
            iptr++;
          }
        }
      }
    } 
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SPARSELU_MATRIX_H