SparseLU_Memory.h 7.42 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* 
 
 * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU 
 
 * -- SuperLU routine (version 3.1) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * August 1, 2008
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 */

#ifndef EIGEN_SPARSELU_MEMORY
#define EIGEN_SPARSELU_MEMORY

namespace Eigen {
namespace internal {
  
enum { LUNoMarker = 3 };
enum {emptyIdxLU = -1};
template<typename Index>
inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b)
{
  return (std::max)(m, (t+b)*w);
}

template< typename Scalar, typename Index>
inline Index LUTempSpace(Index&m, Index& w)
{
  return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar);
}




/** 
  * Expand the existing storage to accomodate more fill-ins
  * \param vec Valid pointer to the vector to allocate or expand
  * \param[in,out] length  At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
  * \param[in] nbElts Current number of elements in the factors
  * \param keep_prev  1: use length  and do not expand the vector; 0: compute new_len and expand
  * \param[in,out] num_expansions Number of times the memory has been expanded
  */
template <typename Scalar, typename Index>
template <typename VectorType>
Index  SparseLUImpl<Scalar,Index>::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions) 
{
  
  float alpha = 1.5; // Ratio of the memory increase 
  Index new_len; // New size of the allocated memory
  
  if(num_expansions == 0 || keep_prev) 
    new_len = length ; // First time allocate requested
  else 
73
    new_len = (std::max)(length+1,Index(alpha * length));
Don Gagne's avatar
Don Gagne committed
74 75 76 77 78 79
  
  VectorType old_vec; // Temporary vector to hold the previous values   
  if (nbElts > 0 )
    old_vec = vec.segment(0,nbElts); 
  
  //Allocate or expand the current vector
80 81 82
#ifdef EIGEN_EXCEPTIONS
  try
#endif
Don Gagne's avatar
Don Gagne committed
83 84 85
  {
    vec.resize(new_len); 
  }
86
#ifdef EIGEN_EXCEPTIONS
Don Gagne's avatar
Don Gagne committed
87
  catch(std::bad_alloc& )
88 89 90
#else
  if(!vec.size())
#endif
Don Gagne's avatar
Don Gagne committed
91
  {
92
    if (!num_expansions)
Don Gagne's avatar
Don Gagne committed
93 94
    {
      // First time to allocate from LUMemInit()
95 96
      // Let LUMemInit() deals with it.
      return -1;
Don Gagne's avatar
Don Gagne committed
97 98 99 100 101 102 103 104 105 106 107 108 109
    }
    if (keep_prev)
    {
      // In this case, the memory length should not not be reduced
      return new_len;
    }
    else 
    {
      // Reduce the size and increase again 
      Index tries = 0; // Number of attempts
      do 
      {
        alpha = (alpha + 1)/2;
110 111
        new_len = (std::max)(length+1,Index(alpha * length));
#ifdef EIGEN_EXCEPTIONS
Don Gagne's avatar
Don Gagne committed
112
        try
113
#endif
Don Gagne's avatar
Don Gagne committed
114 115 116
        {
          vec.resize(new_len); 
        }
117
#ifdef EIGEN_EXCEPTIONS
Don Gagne's avatar
Don Gagne committed
118
        catch(std::bad_alloc& )
119 120 121
#else
        if (!vec.size())
#endif
Don Gagne's avatar
Don Gagne committed
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        {
          tries += 1; 
          if ( tries > 10) return new_len; 
        }
      } while (!vec.size());
    }
  }
  //Copy the previous values to the newly allocated space 
  if (nbElts > 0)
    vec.segment(0, nbElts) = old_vec;   
   
  
  length  = new_len;
  if(num_expansions) ++num_expansions;
  return 0; 
}

/**
 * \brief  Allocate various working space for the numerical factorization phase.
 * \param m number of rows of the input matrix 
 * \param n number of columns 
 * \param annz number of initial nonzeros in the matrix 
 * \param lwork  if lwork=-1, this routine returns an estimated size of the required memory
 * \param glu persistent data to facilitate multiple factors : will be deleted later ??
 * \param fillratio estimated ratio of fill in the factors
 * \param panel_size Size of a panel
 * \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
 * \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
 */
template <typename Scalar, typename Index>
Index SparseLUImpl<Scalar,Index>::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size,  GlobalLU_t& glu)
{
  Index& num_expansions = glu.num_expansions; //No memory expansions so far
155 156 157
  num_expansions = 0;
  glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz+1) / n, m) * n; // estimated number of nonzeros in U 
  glu.nzlmax = (std::max)(Index(4), fillratio) * (annz+1) / 4; // estimated  nnz in L factor
Don Gagne's avatar
Don Gagne committed
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  // Return the estimated size to the user if necessary
  Index tempSpace;
  tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar);
  if (lwork == emptyIdxLU) 
  {
    Index estimated_size;
    estimated_size = (5 * n + 5) * sizeof(Index)  + tempSpace
                    + (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) *  sizeof(Scalar) + n; 
    return estimated_size;
  }
  
  // Setup the required space 
  
  // First allocate Integer pointers for L\U factors
  glu.xsup.resize(n+1);
  glu.supno.resize(n+1);
  glu.xlsub.resize(n+1);
  glu.xlusup.resize(n+1);
  glu.xusub.resize(n+1);

  // Reserve memory for L/U factors
  do 
  {
181 182 183 184
    if(     (expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0)
        ||  (expand<ScalarVector>(glu.ucol,  glu.nzumax,  0, 0, num_expansions)<0)
        ||  (expand<IndexVector> (glu.lsub,  glu.nzlmax,  0, 0, num_expansions)<0)
        ||  (expand<IndexVector> (glu.usub,  glu.nzumax,  0, 1, num_expansions)<0) )
Don Gagne's avatar
Don Gagne committed
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    {
      //Reduce the estimated size and retry
      glu.nzlumax /= 2;
      glu.nzumax /= 2;
      glu.nzlmax /= 2;
      if (glu.nzlumax < annz ) return glu.nzlumax; 
    }
  } while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
  
  ++num_expansions;
  return 0;
  
} // end LuMemInit

/** 
 * \brief Expand the existing storage 
 * \param vec vector to expand 
 * \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
 * \param nbElts current number of elements in the vector.
 * \param memtype Type of the element to expand
 * \param num_expansions Number of expansions 
 * \return 0 on success, > 0 size of the memory allocated so far
 */
template <typename Scalar, typename Index>
template <typename VectorType>
Index SparseLUImpl<Scalar,Index>::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions)
{
  Index failed_size; 
  if (memtype == USUB)
     failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
  else
    failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);

  if (failed_size)
    return failed_size; 
  
  return 0 ;  
}

} // end namespace internal

} // end namespace Eigen
#endif // EIGEN_SPARSELU_MEMORY