repeated_field.h 98.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields.  These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers.  RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.

#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__

#include <utility>
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif

#include <iterator>
#include <limits>
#include <string>
#include <type_traits>

#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/casts.h>
#include <type_traits>


// Must be included last.
#include <google/protobuf/port_def.inc>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

namespace google {
namespace protobuf {

class Message;
class Reflection;

template <typename T>
struct WeakRepeatedPtrField;

namespace internal {

class MergePartialFromCodedStreamHelper;

// kRepeatedFieldLowerClampLimit is the smallest size that will be allocated
// when growing a repeated field.
constexpr int kRepeatedFieldLowerClampLimit = 4;

// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
    (std::numeric_limits<int>::max() / 2) + 1;

// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
  return static_cast<int>(std::distance(begin, end));
}

template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
                            std::input_iterator_tag /*unused*/) {
  return -1;
}

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
  typedef typename std::iterator_traits<Iter>::iterator_category Category;
  return CalculateReserve(begin, end, Category());
}

// Swaps two blocks of memory of size sizeof(T).
template <typename T>
inline void SwapBlock(char* p, char* q) {
  T tmp;
  memcpy(&tmp, p, sizeof(T));
  memcpy(p, q, sizeof(T));
  memcpy(q, &tmp, sizeof(T));
}

// Swaps two blocks of memory of size kSize:
//  template <int kSize> void memswap(char* p, char* q);

template <int kSize>
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
}

#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size)                           \
  template <int kSize>                                                       \
  typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
                          void>::type                                        \
  memswap(char* p, char* q) {                                                \
    SwapBlock<reg_type>(p, q);                                               \
    memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type),                  \
                                      q + sizeof(reg_type));                 \
  }

PROTO_MEMSWAP_DEF_SIZE(uint8, 2)
PROTO_MEMSWAP_DEF_SIZE(uint16, 4)
PROTO_MEMSWAP_DEF_SIZE(uint32, 8)

#ifdef __SIZEOF_INT128__
PROTO_MEMSWAP_DEF_SIZE(uint64, 16)
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
#else
PROTO_MEMSWAP_DEF_SIZE(uint64, (1u << 31))
#endif

#undef PROTO_MEMSWAP_DEF_SIZE

}  // namespace internal

// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages).  Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
  static_assert(
      alignof(Arena) >= alignof(Element),
      "We only support types that have an alignment smaller than Arena");

 public:
  RepeatedField();
  explicit RepeatedField(Arena* arena);
  RepeatedField(const RepeatedField& other);
  template <typename Iter>
  RepeatedField(Iter begin, const Iter& end);
  ~RepeatedField();

  RepeatedField& operator=(const RepeatedField& other);

  RepeatedField(RepeatedField&& other) noexcept;
  RepeatedField& operator=(RepeatedField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  const Element& at(int index) const;
  Element& at(int index);

  void Set(int index, const Element& value);
  void Add(const Element& value);
  // Appends a new element and return a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  Element* Add();
  // Append elements in the range [begin, end) after reserving
  // the appropriate number of elements.
  template <typename Iter>
  void Add(Iter begin, Iter end);

  // Remove the last element in the array.
  void RemoveLast();

  // Extract elements with indices in "[start .. start+num-1]".
  // Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
  // Caution: implementation also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  void ExtractSubrange(int start, int num, Element* elements);

  void Clear();
  void MergeFrom(const RepeatedField& other);
  void CopyFrom(const RepeatedField& other);

  // Reserve space to expand the field to at least the given size.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  // Resize the RepeatedField to a new, smaller size.  This is O(1).
  void Truncate(int new_size);

  void AddAlreadyReserved(const Element& value);
  // Appends a new element and return a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  // Should be called only if Capacity() > Size().
  Element* AddAlreadyReserved();
  Element* AddNAlreadyReserved(int elements);
  int Capacity() const;

  // Like STL resize.  Uses value to fill appended elements.
  // Like Truncate() if new_size <= size(), otherwise this is
  // O(new_size - size()).
  void Resize(int new_size, const Element& value);

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  Element* mutable_data();
  const Element* data() const;

  // Swap entire contents with "other". If they are separate arenas then, copies
  // data between each other.
  void Swap(RepeatedField* other);

  // Swap entire contents with "other". Should be called only if the caller can
  // guarantee that both repeated fields are on the same arena or are on the
  // heap. Swapping between different arenas is disallowed and caught by a
  // GOOGLE_DCHECK (see API docs for details).
  void UnsafeArenaSwap(RepeatedField* other);

  // Swap two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef Element* iterator;
  typedef const Element* const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Returns the number of bytes used by the repeated field, excluding
  // sizeof(*this)
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Get the Arena on which this RepeatedField stores its elements.
  inline Arena* GetArena() const {
    return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
                              : rep()->arena;
  }

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  inline void InternalSwap(RepeatedField* other);

 private:
  static constexpr int kInitialSize = 0;
  // A note on the representation here (see also comment below for
  // RepeatedPtrFieldBase's struct Rep):
  //
  // We maintain the same sizeof(RepeatedField) as before we added arena support
  // so that we do not degrade performance by bloating memory usage. Directly
  // adding an arena_ element to RepeatedField is quite costly. By using
  // indirection in this way, we keep the same size when the RepeatedField is
  // empty (common case), and add only an 8-byte header to the elements array
  // when non-empty. We make sure to place the size fields directly in the
  // RepeatedField class to avoid costly cache misses due to the indirection.
  int current_size_;
  int total_size_;
  struct Rep {
    Arena* arena;
    Element elements[1];
  };
  // We can not use sizeof(Rep) - sizeof(Element) due to the trailing padding on
  // the struct. We can not use sizeof(Arena*) as well because there might be
  // a "gap" after the field arena and before the field elements (e.g., when
  // Element is double and pointer is 32bit).
  static const size_t kRepHeaderSize;

  // If total_size_ == 0 this points to an Arena otherwise it points to the
  // elements member of a Rep struct. Using this invariant allows the storage of
  // the arena pointer without an extra allocation in the constructor.
  void* arena_or_elements_;

  // Return pointer to elements array.
  // pre-condition: the array must have been allocated.
  Element* elements() const {
    GOOGLE_DCHECK_GT(total_size_, 0);
    // Because of above pre-condition this cast is safe.
    return unsafe_elements();
  }

  // Return pointer to elements array if it exists otherwise either null or
  // a invalid pointer is returned. This only happens for empty repeated fields,
  // where you can't dereference this pointer anyway (it's empty).
  Element* unsafe_elements() const {
    return static_cast<Element*>(arena_or_elements_);
  }

  // Return pointer to the Rep struct.
  // pre-condition: the Rep must have been allocated, ie elements() is safe.
  Rep* rep() const {
    char* addr = reinterpret_cast<char*>(elements()) - offsetof(Rep, elements);
    return reinterpret_cast<Rep*>(addr);
  }

  friend class Arena;
  typedef void InternalArenaConstructable_;

  // Move the contents of |from| into |to|, possibly clobbering |from| in the
  // process.  For primitive types this is just a memcpy(), but it could be
  // specialized for non-primitive types to, say, swap each element instead.
  void MoveArray(Element* to, Element* from, int size);

  // Copy the elements of |from| into |to|.
  void CopyArray(Element* to, const Element* from, int size);

  // Internal helper to delete all elements and deallocate the storage.
  // If Element has a trivial destructor (for example, if it's a fundamental
  // type, like int32), the loop will be removed by the optimizer.
  void InternalDeallocate(Rep* rep, int size) {
    if (rep != NULL) {
      Element* e = &rep->elements[0];
      Element* limit = &rep->elements[size];
      for (; e < limit; e++) {
        e->~Element();
      }
      if (rep->arena == NULL) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
        const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
        ::operator delete(static_cast<void*>(rep), bytes);
#else
        ::operator delete(static_cast<void*>(rep));
#endif
      }
    }
  }

  // This class is a performance wrapper around RepeatedField::Add(const T&)
  // function. In general unless a RepeatedField is a local stack variable LLVM
  // has a hard time optimizing Add. The machine code tends to be
  // loop:
  // mov %size, dword ptr [%repeated_field]       // load
  // cmp %size, dword ptr [%repeated_field + 4]
  // jae fallback
  // mov %buffer, qword ptr [%repeated_field + 8]
  // mov dword [%buffer + %size * 4], %value
  // inc %size                                    // increment
  // mov dword ptr [%repeated_field], %size       // store
  // jmp loop
  //
  // This puts a load/store in each iteration of the important loop variable
  // size. It's a pretty bad compile that happens even in simple cases, but
  // largely the presence of the fallback path disturbs the compilers mem-to-reg
  // analysis.
  //
  // This class takes ownership of a repeated field for the duration of it's
  // lifetime. The repeated field should not be accessed during this time, ie.
  // only access through this class is allowed. This class should always be a
  // function local stack variable. Intended use
  //
  // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
  // {
  //   RepeatedFieldAdder<int> adder(out);  // Take ownership of out
  //   for (auto it = begin; it != end; ++it) {
  //     adder.Add(*it);
  //   }
  // }
  //
  // Typically due to the fact adder is a local stack variable. The compiler
  // will be successful in mem-to-reg transformation and the machine code will
  // be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer + %size *
  // 4], %val inc %size jmp loop
  //
  // The first version executes at 7 cycles per iteration while the second
  // version near 1 or 2 cycles.
  class FastAdder {
   public:
    explicit FastAdder(RepeatedField* rf) : repeated_field_(rf) {
      if (kIsPod) {
        index_ = repeated_field_->current_size_;
        capacity_ = repeated_field_->total_size_;
        buffer_ = repeated_field_->unsafe_elements();
      }
    }
    ~FastAdder() {
      if (kIsPod) repeated_field_->current_size_ = index_;
    }

    void Add(const Element& val) {
      if (kIsPod) {
        if (index_ == capacity_) {
          repeated_field_->current_size_ = index_;
          repeated_field_->Reserve(index_ + 1);
          capacity_ = repeated_field_->total_size_;
          buffer_ = repeated_field_->unsafe_elements();
        }
        buffer_[index_++] = val;
      } else {
        repeated_field_->Add(val);
      }
    }

   private:
    constexpr static bool kIsPod = std::is_pod<Element>::value;
    RepeatedField* repeated_field_;
    int index_;
    int capacity_;
    Element* buffer_;

    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdder);
  };

  friend class TestRepeatedFieldHelper;
  friend class ::google::protobuf::internal::ParseContext;
};

template <typename Element>
const size_t RepeatedField<Element>::kRepHeaderSize =
    reinterpret_cast<size_t>(&reinterpret_cast<Rep*>(16)->elements[0]) - 16;

namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
}  // namespace internal

namespace internal {

// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
          bool HasTrivialCopy =
              std::is_pod<Element>::value>
struct ElementCopier {
  void operator()(Element* to, const Element* from, int array_size);
};

}  // namespace internal

namespace internal {

// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for std::string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
  typedef char HasMerge;
  typedef long HasNoMerge;

  // We accept either of:
  // - void MergeFrom(const T& other)
  // - bool MergeFrom(const T& other)
  //
  // We mangle these names a bit to avoid compatibility issues in 'unclean'
  // include environments that may have, e.g., "#define test ..." (yes, this
  // exists).
  template <typename U, typename RetType, RetType (U::*)(const U& arg)>
  struct CheckType;
  template <typename U>
  static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
  template <typename U>
  static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
  template <typename U>
  static HasNoMerge Check(...);

  // Resolves to either std::true_type or std::false_type.
  typedef std::integral_constant<bool,
                                 (sizeof(Check<T>(0)) == sizeof(HasMerge))>
      type;
};

template <typename T, typename = void>
struct TypeImplementsMergeBehavior
    : TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};


template <>
struct TypeImplementsMergeBehavior<std::string> {
  typedef std::true_type type;
};

template <typename T>
struct IsMovable
    : std::integral_constant<bool, std::is_move_constructible<T>::value &&
                                       std::is_move_assignable<T>::value> {};

// This is the common base class for RepeatedPtrFields.  It deals only in void*
// pointers.  Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler.  Its signature is:
//   class TypeHandler {
//    public:
//     typedef MyType Type;
//     static Type* New();
//     static Type* NewFromPrototype(const Type* prototype,
//                                       Arena* arena);
//     static void Delete(Type*);
//     static void Clear(Type*);
//     static void Merge(const Type& from, Type* to);
//
//     // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
//     static int SpaceUsedLong(const Type&);
//   };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
 protected:
  RepeatedPtrFieldBase();
  explicit RepeatedPtrFieldBase(Arena* arena);
  ~RepeatedPtrFieldBase() {
#ifndef NDEBUG
    // Try to trigger segfault / asan failure in non-opt builds. If arena_
    // lifetime has ended before the destructor.
    if (arena_) (void)arena_->SpaceAllocated();
#endif
  }

 public:
  // Must be called from destructor.
  template <typename TypeHandler>
  void Destroy();

 protected:
  bool empty() const;
  int size() const;

  template <typename TypeHandler>
  const typename TypeHandler::Type& at(int index) const;
  template <typename TypeHandler>
  typename TypeHandler::Type& at(int index);

  template <typename TypeHandler>
  typename TypeHandler::Type* Mutable(int index);
  template <typename TypeHandler>
  void Delete(int index);
  template <typename TypeHandler>
  typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);

 public:
  // The next few methods are public so that they can be called from generated
  // code when implicit weak fields are used, but they should never be called by
  // application code.

  template <typename TypeHandler>
  const typename TypeHandler::Type& Get(int index) const;

  // Creates and adds an element using the given prototype, without introducing
  // a link-time dependency on the concrete message type. This method is used to
  // implement implicit weak fields. The prototype may be NULL, in which case an
  // ImplicitWeakMessage will be used as a placeholder.
  MessageLite* AddWeak(const MessageLite* prototype);

  template <typename TypeHandler>
  void Clear();

  template <typename TypeHandler>
  void MergeFrom(const RepeatedPtrFieldBase& other);

  inline void InternalSwap(RepeatedPtrFieldBase* other);

 protected:
  template <
      typename TypeHandler,
      typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
  void Add(typename TypeHandler::Type&& value);

  template <typename TypeHandler>
  void RemoveLast();
  template <typename TypeHandler>
  void CopyFrom(const RepeatedPtrFieldBase& other);

  void CloseGap(int start, int num);

  void Reserve(int new_size);

  int Capacity() const;

  // Used for constructing iterators.
  void* const* raw_data() const;
  void** raw_mutable_data() const;

  template <typename TypeHandler>
  typename TypeHandler::Type** mutable_data();
  template <typename TypeHandler>
  const typename TypeHandler::Type* const* data() const;

  template <typename TypeHandler>
  PROTOBUF_ALWAYS_INLINE void Swap(RepeatedPtrFieldBase* other);

  void SwapElements(int index1, int index2);

  template <typename TypeHandler>
  size_t SpaceUsedExcludingSelfLong() const;

  // Advanced memory management --------------------------------------

  // Like Add(), but if there are no cleared objects to use, returns NULL.
  template <typename TypeHandler>
  typename TypeHandler::Type* AddFromCleared();

  template <typename TypeHandler>
  void AddAllocated(typename TypeHandler::Type* value) {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    AddAllocatedInternal<TypeHandler>(value, t);
  }

  template <typename TypeHandler>
  void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLast() {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    return ReleaseLastInternal<TypeHandler>(t);
  }

  // Releases last element and returns it, but does not do out-of-arena copy.
  // And just returns the raw pointer to the contained element in the arena.
  template <typename TypeHandler>
  typename TypeHandler::Type* UnsafeArenaReleaseLast();

  int ClearedCount() const;
  template <typename TypeHandler>
  void AddCleared(typename TypeHandler::Type* value);
  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseCleared();

  template <typename TypeHandler>
  void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
  template <typename TypeHandler>
  void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);

  template <typename TypeHandler>
  PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
      typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena);
  template <typename TypeHandler>
  PROTOBUF_NOINLINE void AddAllocatedSlowWithoutCopy(
      typename TypeHandler::Type* value);

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::false_type);

  template <typename TypeHandler>
  PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other);

  inline Arena* GetArena() const { return arena_; }

 private:
  static constexpr int kInitialSize = 0;
  // A few notes on internal representation:
  //
  // We use an indirected approach, with struct Rep, to keep
  // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
  // was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
  // allocated only when the repeated field is non-empty, and it is a
  // dynamically-sized struct (the header is directly followed by elements[]).
  // We place arena_ and current_size_ directly in the object to avoid cache
  // misses due to the indirection, because these fields are checked frequently.
  // Placing all fields directly in the RepeatedPtrFieldBase instance costs
  // significant performance for memory-sensitive workloads.
  Arena* arena_;
  int current_size_;
  int total_size_;
  struct Rep {
    int allocated_size;
    void* elements[1];
  };
  static constexpr size_t kRepHeaderSize = sizeof(Rep) - sizeof(void*);
  Rep* rep_;

  template <typename TypeHandler>
  static inline typename TypeHandler::Type* cast(void* element) {
    return reinterpret_cast<typename TypeHandler::Type*>(element);
  }
  template <typename TypeHandler>
  static inline const typename TypeHandler::Type* cast(const void* element) {
    return reinterpret_cast<const typename TypeHandler::Type*>(element);
  }

  // Non-templated inner function to avoid code duplication. Takes a function
  // pointer to the type-specific (templated) inner allocate/merge loop.
  void MergeFromInternal(const RepeatedPtrFieldBase& other,
                         void (RepeatedPtrFieldBase::*inner_loop)(void**,
                                                                  void**, int,
                                                                  int));

  template <typename TypeHandler>
  void MergeFromInnerLoop(void** our_elems, void** other_elems, int length,
                          int already_allocated);

  // Internal helper: extend array space if necessary to contain |extend_amount|
  // more elements, and return a pointer to the element immediately following
  // the old list of elements.  This interface factors out common behavior from
  // Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
  void** InternalExtend(int extend_amount);

  // The reflection implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class ::PROTOBUF_NAMESPACE_ID::Reflection;

  // ExtensionSet stores repeated message extensions as
  // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
  // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
  // reinterpreting MessageLite as Message.  ExtensionSet also needs to make use
  // of AddFromCleared(), which is not part of the public interface.
  friend class ExtensionSet;

  // The MapFieldBase implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class MapFieldBase;

  // The table-driven MergePartialFromCodedStream implementation needs to
  // operate on RepeatedPtrField<MessageLite>.
  friend class MergePartialFromCodedStreamHelper;
  friend class AccessorHelper;
  template <typename T>
  friend struct google::protobuf::WeakRepeatedPtrField;

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};

template <typename GenericType>
class GenericTypeHandler {
 public:
  typedef GenericType Type;
  using Movable = IsMovable<GenericType>;

  static inline GenericType* New(Arena* arena) {
    return Arena::CreateMaybeMessage<Type>(arena);
  }
  static inline GenericType* New(Arena* arena, GenericType&& value) {
    return Arena::Create<GenericType>(arena, std::move(value));
  }
  static inline GenericType* NewFromPrototype(const GenericType* prototype,
                                              Arena* arena = NULL);
  static inline void Delete(GenericType* value, Arena* arena) {
    if (arena == NULL) {
      delete value;
    }
  }
  static inline Arena* GetArena(GenericType* value) {
    return Arena::GetArena<Type>(value);
  }
  static inline void* GetMaybeArenaPointer(GenericType* value) {
    return Arena::GetArena<Type>(value);
  }

  static inline void Clear(GenericType* value) { value->Clear(); }
  PROTOBUF_NOINLINE
  static void Merge(const GenericType& from, GenericType* to);
  static inline size_t SpaceUsedLong(const GenericType& value) {
    return value.SpaceUsedLong();
  }
};

template <typename GenericType>
GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
    const GenericType* /* prototype */, Arena* arena) {
  return New(arena);
}
template <typename GenericType>
void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
                                            GenericType* to) {
  to->MergeFrom(from);
}

// NewFromPrototype() and Merge() are not defined inline here, as we will need
// to do a virtual function dispatch anyways to go from Message* to call
// New/Merge.
template <>
MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
    const MessageLite* prototype, Arena* arena);
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetArena(MessageLite* value) {
  return value->GetArena();
}
template <>
inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
    MessageLite* value) {
  return value->GetMaybeArenaPointer();
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
                                            MessageLite* to);
template <>
inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
  value->clear();
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
                                            std::string* to);

// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
    const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetArena(Message* value);
template <>
PROTOBUF_EXPORT void* GenericTypeHandler<Message>::GetMaybeArenaPointer(
    Message* value);

class StringTypeHandler {
 public:
  typedef std::string Type;
  using Movable = IsMovable<Type>;

  static inline std::string* New(Arena* arena) {
    return Arena::Create<std::string>(arena);
  }
  static inline std::string* New(Arena* arena, std::string&& value) {
    return Arena::Create<std::string>(arena, std::move(value));
  }
  static inline std::string* NewFromPrototype(const std::string*,
                                              Arena* arena) {
    return New(arena);
  }
  static inline Arena* GetArena(std::string*) { return NULL; }
  static inline void* GetMaybeArenaPointer(std::string* /* value */) {
    return NULL;
  }
  static inline void Delete(std::string* value, Arena* arena) {
    if (arena == NULL) {
      delete value;
    }
  }
  static inline void Clear(std::string* value) { value->clear(); }
  static inline void Merge(const std::string& from, std::string* to) {
    *to = from;
  }
  static size_t SpaceUsedLong(const std::string& value) {
    return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
  }
};

}  // namespace internal

// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
 public:
  RepeatedPtrField();
  explicit RepeatedPtrField(Arena* arena);

  RepeatedPtrField(const RepeatedPtrField& other);
  template <typename Iter>
  RepeatedPtrField(Iter begin, const Iter& end);
  ~RepeatedPtrField();

  RepeatedPtrField& operator=(const RepeatedPtrField& other);

  RepeatedPtrField(RepeatedPtrField&& other) noexcept;
  RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);
  Element* Add();
  void Add(Element&& value);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  const Element& at(int index) const;
  Element& at(int index);

  // Remove the last element in the array.
  // Ownership of the element is retained by the array.
  void RemoveLast();

  // Delete elements with indices in the range [start .. start+num-1].
  // Caution: implementation moves all elements with indices [start+num .. ].
  // Calling this routine inside a loop can cause quadratic behavior.
  void DeleteSubrange(int start, int num);

  void Clear();
  void MergeFrom(const RepeatedPtrField& other);
  void CopyFrom(const RepeatedPtrField& other);

  // Reserve space to expand the field to at least the given size.  This only
  // resizes the pointer array; it doesn't allocate any objects.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  int Capacity() const;

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  Element** mutable_data();
  const Element* const* data() const;

  // Swap entire contents with "other". If they are on separate arenas, then
  // copies data.
  void Swap(RepeatedPtrField* other);

  // Swap entire contents with "other". Caller should guarantee that either both
  // fields are on the same arena or both are on the heap. Swapping between
  // different arenas with this function is disallowed and is caught via
  // GOOGLE_DCHECK.
  void UnsafeArenaSwap(RepeatedPtrField* other);

  // Swap two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef internal::RepeatedPtrIterator<Element> iterator;
  typedef internal::RepeatedPtrIterator<const Element> const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Custom STL-like iterator that iterates over and returns the underlying
  // pointers to Element rather than Element itself.
  typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
      pointer_iterator;
  typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
                                                const void* const>
      const_pointer_iterator;
  pointer_iterator pointer_begin();
  const_pointer_iterator pointer_begin() const;
  pointer_iterator pointer_end();
  const_pointer_iterator pointer_end() const;

  // Returns (an estimate of) the number of bytes used by the repeated field,
  // excluding sizeof(*this).
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Advanced memory management --------------------------------------
  // When hardcore memory management becomes necessary -- as it sometimes
  // does here at Google -- the following methods may be useful.

  // Add an already-allocated object, passing ownership to the
  // RepeatedPtrField.
  //
  // Note that some special behavior occurs with respect to arenas:
  //
  //   (i) if this field holds submessages, the new submessage will be copied if
  //   the original is in an arena and this RepeatedPtrField is either in a
  //   different arena, or on the heap.
  //   (ii) if this field holds strings, the passed-in string *must* be
  //   heap-allocated, not arena-allocated. There is no way to dynamically check
  //   this at runtime, so User Beware.
  void AddAllocated(Element* value);

  // Remove the last element and return it, passing ownership to the caller.
  // Requires:  size() > 0
  //
  // If this RepeatedPtrField is on an arena, an object copy is required to pass
  // ownership back to the user (for compatible semantics). Use
  // UnsafeArenaReleaseLast() if this behavior is undesired.
  Element* ReleaseLast();

  // Add an already-allocated object, skipping arena-ownership checks. The user
  // must guarantee that the given object is in the same arena as this
  // RepeatedPtrField.
  // It is also useful in legacy code that uses temporary ownership to avoid
  // copies. Example:
  //   RepeatedPtrField<T> temp_field;
  //   temp_field.AddAllocated(new T);
  //   ... // Do something with temp_field
  //   temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
  // If you put temp_field on the arena this fails, because the ownership
  // transfers to the arena at the "AddAllocated" call and is not released
  // anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
  void UnsafeArenaAddAllocated(Element* value);

  // Remove the last element and return it.  Works only when operating on an
  // arena. The returned pointer is to the original object in the arena, hence
  // has the arena's lifetime.
  // Requires:  current_size_ > 0
  Element* UnsafeArenaReleaseLast();

  // Extract elements with indices in the range "[start .. start+num-1]".
  // The caller assumes ownership of the extracted elements and is responsible
  // for deleting them when they are no longer needed.
  // If "elements" is non-NULL, then pointers to the extracted elements
  // are stored in "elements[0 .. num-1]" for the convenience of the caller.
  // If "elements" is NULL, then the caller must use some other mechanism
  // to perform any further operations (like deletion) on these elements.
  // Caution: implementation also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  //
  // Memory copying behavior is identical to ReleaseLast(), described above: if
  // this RepeatedPtrField is on an arena, an object copy is performed for each
  // returned element, so that all returned element pointers are to
  // heap-allocated copies. If this copy is not desired, the user should call
  // UnsafeArenaExtractSubrange().
  void ExtractSubrange(int start, int num, Element** elements);

  // Identical to ExtractSubrange() described above, except that when this
  // repeated field is on an arena, no object copies are performed. Instead, the
  // raw object pointers are returned. Thus, if on an arena, the returned
  // objects must not be freed, because they will not be heap-allocated objects.
  void UnsafeArenaExtractSubrange(int start, int num, Element** elements);

  // When elements are removed by calls to RemoveLast() or Clear(), they
  // are not actually freed.  Instead, they are cleared and kept so that
  // they can be reused later.  This can save lots of CPU time when
  // repeatedly reusing a protocol message for similar purposes.
  //
  // Hardcore programs may choose to manipulate these cleared objects
  // to better optimize memory management using the following routines.

  // Get the number of cleared objects that are currently being kept
  // around for reuse.
  int ClearedCount() const;
  // Add an element to the pool of cleared objects, passing ownership to
  // the RepeatedPtrField.  The element must be cleared prior to calling
  // this method.
  //
  // This method cannot be called when the repeated field is on an arena or when
  // |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
  void AddCleared(Element* value);
  // Remove a single element from the cleared pool and return it, passing
  // ownership to the caller.  The element is guaranteed to be cleared.
  // Requires:  ClearedCount() > 0
  //
  //
  // This method cannot be called when the repeated field is on an arena; doing
  // so will trigger a GOOGLE_DCHECK-failure.
  Element* ReleaseCleared();

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Gets the arena on which this RepeatedPtrField stores its elements.
  inline Arena* GetArena() const;

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  void InternalSwap(RepeatedPtrField* other) {
    internal::RepeatedPtrFieldBase::InternalSwap(other);
  }

 private:
  // Note:  RepeatedPtrField SHOULD NOT be subclassed by users.
  class TypeHandler;

  // Implementations for ExtractSubrange(). The copying behavior must be
  // included only if the type supports the necessary operations (e.g.,
  // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
  // uses SFINAE to choose one of the below implementations.
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::true_type);
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::false_type);

  friend class Arena;

  template <typename T>
  friend struct WeakRepeatedPtrField;

  typedef void InternalArenaConstructable_;

};

// implementation ====================================================

template <typename Element>
inline RepeatedField<Element>::RepeatedField()
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
    : current_size_(0), total_size_(0), arena_or_elements_(arena) {}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
  if (other.current_size_ != 0) {
    Reserve(other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(0), &other.Get(0), other.size());
  }
}

template <typename Element>
template <typename Iter>
RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
    : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
  Add(begin, end);
}

template <typename Element>
RepeatedField<Element>::~RepeatedField() {
  if (total_size_ > 0) {
    InternalDeallocate(rep(), total_size_);
  }
}

template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
    const RepeatedField& other) {
  if (this != &other) CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
    : RepeatedField() {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // other is on an arena. This field can't be on an arena because arena
  // construction always uses the Arena* accepting constructor.
  if (other.GetArena()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
}

template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
    RepeatedField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (this->GetArena() != other.GetArena()) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedField<Element>::empty() const {
  return current_size_ == 0;
}

template <typename Element>
inline int RepeatedField<Element>::size() const {
  return current_size_;
}

template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
  return total_size_;
}

template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  elements()[current_size_++] = value;
}

template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  return &elements()[current_size_++];
}

template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n) {
  GOOGLE_DCHECK_GE(total_size_ - current_size_, n)
      << total_size_ << ", " << current_size_;
  // Warning: sometimes people call this when n == 0 and total_size_ == 0. In
  // this case the return pointer points to a zero size array (n == 0). Hence
  // we can just use unsafe_elements(), because the user cannot dereference the
  // pointer anyway.
  Element* ret = unsafe_elements() + current_size_;
  current_size_ += n;
  return ret;
}

template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
  GOOGLE_DCHECK_GE(new_size, 0);
  if (new_size > current_size_) {
    Reserve(new_size);
    std::fill(&elements()[current_size_], &elements()[new_size], value);
  }
  current_size_ = new_size;
}

template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline Element& RepeatedField<Element>::at(int index) {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return elements()[index];
}

template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return &elements()[index];
}

template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  elements()[index] = value;
}

template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
  uint32 size = current_size_;
  if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
  elements()[size] = value;
  current_size_ = size + 1;
}

template <typename Element>
inline Element* RepeatedField<Element>::Add() {
  uint32 size = current_size_;
  if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
  auto ptr = &elements()[size];
  current_size_ = size + 1;
  return ptr;
}

template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
  int reserve = internal::CalculateReserve(begin, end);
  if (reserve != -1) {
    if (reserve == 0) {
      return;
    }

    Reserve(reserve + size());
    // TODO(ckennelly):  The compiler loses track of the buffer freshly
    // allocated by Reserve() by the time we call elements, so it cannot
    // guarantee that elements does not alias [begin(), end()).
    //
    // If restrict is available, annotating the pointer obtained from elements()
    // causes this to lower to memcpy instead of memmove.
    std::copy(begin, end, elements() + size());
    current_size_ = reserve + size();
  } else {
    FastAdder fast_adder(this);
    for (; begin != end; ++begin) fast_adder.Add(*begin);
  }
}

template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  current_size_--;
}

template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
                                             Element* elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, this->current_size_);

  // Save the values of the removed elements if requested.
  if (elements != NULL) {
    for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
  }

  // Slide remaining elements down to fill the gap.
  if (num > 0) {
    for (int i = start + num; i < this->current_size_; ++i)
      this->Set(i - num, this->Get(i));
    this->Truncate(this->current_size_ - num);
  }
}

template <typename Element>
inline void RepeatedField<Element>::Clear() {
  current_size_ = 0;
}

template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
  GOOGLE_DCHECK_NE(&other, this);
  if (other.current_size_ != 0) {
    int existing_size = size();
    Reserve(existing_size + other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(existing_size), &other.Get(0), other.size());
  }
}

template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
  if (&other == this) return;
  Clear();
  MergeFrom(other);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator first, const_iterator last) {
  size_type first_offset = first - cbegin();
  if (first != last) {
    Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
  }
  return begin() + first_offset;
}

template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
  return unsafe_elements();
}

template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
  return unsafe_elements();
}

template <typename Element>
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
  GOOGLE_DCHECK(this != other);
  GOOGLE_DCHECK(GetArena() == other->GetArena());

  // Swap all fields at once.
  static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
                "offsetof() requires standard layout before c++17");
  internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
                    sizeof(this->arena_or_elements_) -
                    offsetof(RepeatedField, current_size_)>(
      reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
      reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
}

template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
  if (this == other) return;
  if (GetArena() == other->GetArena()) {
    InternalSwap(other);
  } else {
    RepeatedField<Element> temp(other->GetArena());
    temp.MergeFrom(*this);
    CopyFrom(*other);
    other->UnsafeArenaSwap(&temp);
  }
}

template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
  if (this == other) return;
  InternalSwap(other);
}

template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
  using std::swap;  // enable ADL with fallback
  swap(elements()[index1], elements()[index2]);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
  return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
  return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const {
  return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
  return unsafe_elements() + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
  return unsafe_elements() + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const {
  return unsafe_elements() + current_size_;
}

template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
  return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
}

namespace internal {
// Returns the new size for a reserved field based on its 'total_size' and the
// requested 'new_size'. The result is clamped to the closed interval:
//   [internal::kMinRepeatedFieldAllocationSize,
//    std::numeric_limits<int>::max()]
// Requires:
//     new_size > total_size &&
//     (total_size == 0 ||
//      total_size >= kRepeatedFieldLowerClampLimit)
inline int CalculateReserveSize(int total_size, int new_size) {
  if (new_size < kRepeatedFieldLowerClampLimit) {
    // Clamp to smallest allowed size.
    return kRepeatedFieldLowerClampLimit;
  }
  if (total_size < kRepeatedFieldUpperClampLimit) {
    return std::max(total_size * 2, new_size);
  } else {
    // Clamp to largest allowed size.
    GOOGLE_DCHECK_GT(new_size, kRepeatedFieldUpperClampLimit);
    return std::numeric_limits<int>::max();
  }
}
}  // namespace internal

// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
  if (total_size_ >= new_size) return;
  Rep* old_rep = total_size_ > 0 ? rep() : NULL;
  Rep* new_rep;
  Arena* arena = GetArena();
  new_size = internal::CalculateReserveSize(total_size_, new_size);
  GOOGLE_DCHECK_LE(
      static_cast<size_t>(new_size),
      (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
      << "Requested size is too large to fit into size_t.";
  size_t bytes =
      kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
  if (arena == NULL) {
    new_rep = static_cast<Rep*>(::operator new(bytes));
  } else {
    new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
  }
  new_rep->arena = arena;
  int old_total_size = total_size_;
  // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
  // Maintain invariant:
  //     total_size_ == 0 ||
  //     total_size_ >= internal::kMinRepeatedFieldAllocationSize
  total_size_ = new_size;
  arena_or_elements_ = new_rep->elements;
  // Invoke placement-new on newly allocated elements. We shouldn't have to do
  // this, since Element is supposed to be POD, but a previous version of this
  // code allocated storage with "new Element[size]" and some code uses
  // RepeatedField with non-POD types, relying on constructor invocation. If
  // Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
  // completely removes this loop because the loop body is empty, so this has no
  // effect unless its side-effects are required for correctness.
  // Note that we do this before MoveArray() below because Element's copy
  // assignment implementation will want an initialized instance first.
  Element* e = &elements()[0];
  Element* limit = e + total_size_;
  for (; e < limit; e++) {
    new (e) Element;
  }
  if (current_size_ > 0) {
    MoveArray(&elements()[0], old_rep->elements, current_size_);
  }

  // Likewise, we need to invoke destructors on the old array.
  InternalDeallocate(old_rep, old_total_size);

}

template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
  GOOGLE_DCHECK_LE(new_size, current_size_);
  if (current_size_ > 0) {
    current_size_ = new_size;
  }
}

template <typename Element>
inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
                                              int array_size) {
  CopyArray(to, from, array_size);
}

template <typename Element>
inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
                                              int array_size) {
  internal::ElementCopier<Element>()(to, from, array_size);
}

namespace internal {

template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
                                                        const Element* from,
                                                        int array_size) {
  std::copy(from, from + array_size, to);
}

template <typename Element>
struct ElementCopier<Element, true> {
  void operator()(Element* to, const Element* from, int array_size) {
    memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
  }
};

}  // namespace internal


// -------------------------------------------------------------------

namespace internal {

inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
    : arena_(NULL), current_size_(0), total_size_(0), rep_(NULL) {}

inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(Arena* arena)
    : arena_(arena), current_size_(0), total_size_(0), rep_(NULL) {}

template <typename TypeHandler>
void RepeatedPtrFieldBase::Destroy() {
  if (rep_ != NULL && arena_ == NULL) {
    int n = rep_->allocated_size;
    void* const* elements = rep_->elements;
    for (int i = 0; i < n; i++) {
      TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
    }
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
    const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
    ::operator delete(static_cast<void*>(rep_), size);
#else
    ::operator delete(static_cast<void*>(rep_));
#endif
  }
  rep_ = NULL;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
  if (other->GetArena() == GetArena()) {
    InternalSwap(other);
  } else {
    SwapFallback<TypeHandler>(other);
  }
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
  GOOGLE_DCHECK(other->GetArena() != GetArena());

  // Copy semantics in this case. We try to improve efficiency by placing the
  // temporary on |other|'s arena so that messages are copied twice rather than
  // three times.
  RepeatedPtrFieldBase temp(other->GetArena());
  temp.MergeFrom<TypeHandler>(*this);
  this->Clear<TypeHandler>();
  this->MergeFrom<TypeHandler>(*other);
  other->InternalSwap(&temp);
  temp.Destroy<TypeHandler>();  // Frees rep_ if `other` had no arena.
}

inline bool RepeatedPtrFieldBase::empty() const { return current_size_ == 0; }

inline int RepeatedPtrFieldBase::size() const { return current_size_; }

template <typename TypeHandler>
inline const typename TypeHandler::Type& RepeatedPtrFieldBase::Get(
    int index) const {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return *cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline const typename TypeHandler::Type& RepeatedPtrFieldBase::at(
    int index) const {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return *cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline typename TypeHandler::Type& RepeatedPtrFieldBase::at(int index) {
  GOOGLE_CHECK_GE(index, 0);
  GOOGLE_CHECK_LT(index, current_size_);
  return *cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Mutable(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Delete(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
    typename TypeHandler::Type* prototype) {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    return cast<TypeHandler>(rep_->elements[current_size_++]);
  }
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  ++rep_->allocated_size;
  typename TypeHandler::Type* result =
      TypeHandler::NewFromPrototype(prototype, arena_);
  rep_->elements[current_size_++] = result;
  return result;
}

template <typename TypeHandler,
          typename std::enable_if<TypeHandler::Movable::value>::type*>
inline void RepeatedPtrFieldBase::Add(typename TypeHandler::Type&& value) {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
    return;
  }
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  ++rep_->allocated_size;
  typename TypeHandler::Type* result =
      TypeHandler::New(arena_, std::move(value));
  rep_->elements[current_size_++] = result;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::RemoveLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::Clear() {
  const int n = current_size_;
  GOOGLE_DCHECK_GE(n, 0);
  if (n > 0) {
    void* const* elements = rep_->elements;
    int i = 0;
    do {
      TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
    } while (i < n);
    current_size_ = 0;
  }
}

// To avoid unnecessary code duplication and reduce binary size, we use a
// layered approach to implementing MergeFrom(). The toplevel method is
// templated, so we get a small thunk per concrete message type in the binary.
// This calls a shared implementation with most of the logic, passing a function
// pointer to another type-specific piece of code that calls the object-allocate
// and merge handlers.
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
  GOOGLE_DCHECK_NE(&other, this);
  if (other.current_size_ == 0) return;
  MergeFromInternal(other,
                    &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
}

inline void RepeatedPtrFieldBase::MergeFromInternal(
    const RepeatedPtrFieldBase& other,
    void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
  // Note: wrapper has already guaranteed that other.rep_ != NULL here.
  int other_size = other.current_size_;
  void** other_elements = other.rep_->elements;
  void** new_elements = InternalExtend(other_size);
  int allocated_elems = rep_->allocated_size - current_size_;
  (this->*inner_loop)(new_elements, other_elements, other_size,
                      allocated_elems);
  current_size_ += other_size;
  if (rep_->allocated_size < current_size_) {
    rep_->allocated_size = current_size_;
  }
}

// Merges other_elems to our_elems.
template <typename TypeHandler>
void RepeatedPtrFieldBase::MergeFromInnerLoop(void** our_elems,
                                              void** other_elems, int length,
                                              int already_allocated) {
  // Split into two loops, over ranges [0, allocated) and [allocated, length),
  // to avoid a branch within the loop.
  for (int i = 0; i < already_allocated && i < length; i++) {
    // Already allocated: use existing element.
    typename TypeHandler::Type* other_elem =
        reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
    typename TypeHandler::Type* new_elem =
        reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
    TypeHandler::Merge(*other_elem, new_elem);
  }
  Arena* arena = GetArena();
  for (int i = already_allocated; i < length; i++) {
    // Not allocated: alloc a new element first, then merge it.
    typename TypeHandler::Type* other_elem =
        reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
    typename TypeHandler::Type* new_elem =
        TypeHandler::NewFromPrototype(other_elem, arena);
    TypeHandler::Merge(*other_elem, new_elem);
    our_elems[i] = new_elem;
  }
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
  if (&other == this) return;
  RepeatedPtrFieldBase::Clear<TypeHandler>();
  RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}

inline int RepeatedPtrFieldBase::Capacity() const { return total_size_; }

inline void* const* RepeatedPtrFieldBase::raw_data() const {
  return rep_ ? rep_->elements : NULL;
}

inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
  return rep_ ? const_cast<void**>(rep_->elements) : NULL;
}

template <typename TypeHandler>
inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
  // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
  //   method entirely.
  return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
}

template <typename TypeHandler>
inline const typename TypeHandler::Type* const* RepeatedPtrFieldBase::data()
    const {
  // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
  //   method entirely.
  return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
}

inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
  using std::swap;  // enable ADL with fallback
  swap(rep_->elements[index1], rep_->elements[index2]);
}

template <typename TypeHandler>
inline size_t RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong() const {
  size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
  if (rep_ != NULL) {
    for (int i = 0; i < rep_->allocated_size; ++i) {
      allocated_bytes +=
          TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
    }
    allocated_bytes += kRepHeaderSize;
  }
  return allocated_bytes;
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    return cast<TypeHandler>(rep_->elements[current_size_++]);
  } else {
    return NULL;
  }
}

// AddAllocated version that implements arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
    typename TypeHandler::Type* value, std::true_type) {
  Arena* element_arena =
      reinterpret_cast<Arena*>(TypeHandler::GetMaybeArenaPointer(value));
  Arena* arena = GetArena();
  if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
    // Fast path: underlying arena representation (tagged pointer) is equal to
    // our arena pointer, and we can add to array without resizing it (at least
    // one slot that is not allocated).
    void** elems = rep_->elements;
    if (current_size_ < rep_->allocated_size) {
      // Make space at [current] by moving first allocated element to end of
      // allocated list.
      elems[rep_->allocated_size] = elems[current_size_];
    }
    elems[current_size_] = value;
    current_size_ = current_size_ + 1;
    rep_->allocated_size = rep_->allocated_size + 1;
  } else {
    AddAllocatedSlowWithCopy<TypeHandler>(value, TypeHandler::GetArena(value),
                                          arena);
  }
}

// Slowpath handles all cases, copying if necessary.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
    // Pass value_arena and my_arena to avoid duplicate virtual call (value) or
    // load (mine).
    typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
  // Ensure that either the value is in the same arena, or if not, we do the
  // appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
  // it to our arena/heap (otherwise).
  if (my_arena != NULL && value_arena == NULL) {
    my_arena->Own(value);
  } else if (my_arena != value_arena) {
    typename TypeHandler::Type* new_value =
        TypeHandler::NewFromPrototype(value, my_arena);
    TypeHandler::Merge(*value, new_value);
    TypeHandler::Delete(value, value_arena);
    value = new_value;
  }

  UnsafeArenaAddAllocated<TypeHandler>(value);
}

// AddAllocated version that does not implement arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
    typename TypeHandler::Type* value, std::false_type) {
  if (rep_ && rep_->allocated_size < total_size_) {
    // Fast path: underlying arena representation (tagged pointer) is equal to
    // our arena pointer, and we can add to array without resizing it (at least
    // one slot that is not allocated).
    void** elems = rep_->elements;
    if (current_size_ < rep_->allocated_size) {
      // Make space at [current] by moving first allocated element to end of
      // allocated list.
      elems[rep_->allocated_size] = elems[current_size_];
    }
    elems[current_size_] = value;
    current_size_ = current_size_ + 1;
    ++rep_->allocated_size;
  } else {
    UnsafeArenaAddAllocated<TypeHandler>(value);
  }
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
    typename TypeHandler::Type* value) {
  // Make room for the new pointer.
  if (!rep_ || current_size_ == total_size_) {
    // The array is completely full with no cleared objects, so grow it.
    Reserve(total_size_ + 1);
    ++rep_->allocated_size;
  } else if (rep_->allocated_size == total_size_) {
    // There is no more space in the pointer array because it contains some
    // cleared objects awaiting reuse.  We don't want to grow the array in this
    // case because otherwise a loop calling AddAllocated() followed by Clear()
    // would leak memory.
    TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
                        arena_);
  } else if (current_size_ < rep_->allocated_size) {
    // We have some cleared objects.  We don't care about their order, so we
    // can just move the first one to the end to make space.
    rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
    ++rep_->allocated_size;
  } else {
    // There are no cleared objects.
    ++rep_->allocated_size;
  }

  rep_->elements[current_size_++] = value;
}

// ReleaseLast() for types that implement merge/copy behavior.
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
    std::true_type) {
  // First, release an element.
  typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
  // Now perform a copy if we're on an arena.
  Arena* arena = GetArena();
  if (arena == NULL) {
    return result;
  } else {
    typename TypeHandler::Type* new_result =
        TypeHandler::NewFromPrototype(result, NULL);
    TypeHandler::Merge(*result, new_result);
    return new_result;
  }
}

// ReleaseLast() for types that *do not* implement merge/copy behavior -- this
// is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
// an arena, since the user really should implement the copy operation in this
// case.
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
    std::false_type) {
  GOOGLE_DCHECK(GetArena() == NULL)
      << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
      << "with a type that does not implement MergeFrom. This is unsafe; "
      << "please implement MergeFrom for your type.";
  return UnsafeArenaReleaseLast<TypeHandler>();
}

template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  typename TypeHandler::Type* result =
      cast<TypeHandler>(rep_->elements[--current_size_]);
  --rep_->allocated_size;
  if (current_size_ < rep_->allocated_size) {
    // There are cleared elements on the end; replace the removed element
    // with the last allocated element.
    rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
  }
  return result;
}

inline int RepeatedPtrFieldBase::ClearedCount() const {
  return rep_ ? (rep_->allocated_size - current_size_) : 0;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::AddCleared(
    typename TypeHandler::Type* value) {
  GOOGLE_DCHECK(GetArena() == NULL)
      << "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
  GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
      << "AddCleared() can only accept values not on an arena.";
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  rep_->elements[rep_->allocated_size++] = value;
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
  GOOGLE_DCHECK(GetArena() == NULL)
      << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
      << "an arena.";
  GOOGLE_DCHECK(GetArena() == NULL);
  GOOGLE_DCHECK(rep_ != NULL);
  GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
  return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
}

}  // namespace internal

// -------------------------------------------------------------------

template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
    : public internal::GenericTypeHandler<Element> {};

template <>
class RepeatedPtrField<std::string>::TypeHandler
    : public internal::StringTypeHandler {};

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField() : RepeatedPtrFieldBase() {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
    : RepeatedPtrFieldBase(arena) {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    const RepeatedPtrField& other)
    : RepeatedPtrFieldBase() {
  MergeFrom(other);
}

template <typename Element>
template <typename Iter>
inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin,
                                                   const Iter& end) {
  int reserve = internal::CalculateReserve(begin, end);
  if (reserve != -1) {
    Reserve(reserve);
  }
  for (; begin != end; ++begin) {
    *Add() = *begin;
  }
}

template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
  Destroy<TypeHandler>();
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    const RepeatedPtrField& other) {
  if (this != &other) CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    RepeatedPtrField&& other) noexcept
    : RepeatedPtrField() {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // other is on an arena. This field can't be on an arena because arena
  // construction always uses the Arena* accepting constructor.
  if (other.GetArena()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    RepeatedPtrField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (this->GetArena() != other.GetArena()) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
  return RepeatedPtrFieldBase::empty();
}

template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
  return RepeatedPtrFieldBase::size();
}

template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
  return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}

template <typename Element>
inline const Element& RepeatedPtrField<Element>::at(int index) const {
  return RepeatedPtrFieldBase::at<TypeHandler>(index);
}

template <typename Element>
inline Element& RepeatedPtrField<Element>::at(int index) {
  return RepeatedPtrFieldBase::at<TypeHandler>(index);
}


template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
  return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
  return RepeatedPtrFieldBase::Add<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
  RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}

template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
  RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());
  for (int i = 0; i < num; ++i) {
    RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
  }
  ExtractSubrange(start, num, NULL);
}

template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
                                                       Element** elements) {
  typename internal::TypeImplementsMergeBehavior<
      typename TypeHandler::Type>::type t;
  ExtractSubrangeInternal(start, num, elements, t);
}

// ExtractSubrange() implementation for types that implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::true_type) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num > 0) {
    // Save the values of the removed elements if requested.
    if (elements != NULL) {
      if (GetArena() != NULL) {
        // If we're on an arena, we perform a copy for each element so that the
        // returned elements are heap-allocated.
        for (int i = 0; i < num; ++i) {
          Element* element =
              RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
          typename TypeHandler::Type* new_value =
              TypeHandler::NewFromPrototype(element, NULL);
          TypeHandler::Merge(*element, new_value);
          elements[i] = new_value;
        }
      } else {
        for (int i = 0; i < num; ++i) {
          elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
        }
      }
    }
    CloseGap(start, num);
  }
}

// ExtractSubrange() implementation for types that do not implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::false_type) {
  // This case is identical to UnsafeArenaExtractSubrange(). However, since
  // ExtractSubrange() must return heap-allocated objects by contract, and we
  // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
  // we are not on an arena.
  GOOGLE_DCHECK(GetArena() == NULL)
      << "ExtractSubrange() when arena is non-NULL is only supported when "
      << "the Element type supplies a MergeFrom() operation to make copies.";
  UnsafeArenaExtractSubrange(start, num, elements);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
    int start, int num, Element** elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num > 0) {
    // Save the values of the removed elements if requested.
    if (elements != NULL) {
      for (int i = 0; i < num; ++i) {
        elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
      }
    }
    CloseGap(start, num);
  }
}

template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
  RepeatedPtrFieldBase::Clear<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
    const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
  size_type pos_offset = std::distance(cbegin(), first);
  size_type last_offset = std::distance(cbegin(), last);
  DeleteSubrange(pos_offset, last_offset - pos_offset);
  return begin() + pos_offset;
}

template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
  return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}

template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
  return RepeatedPtrFieldBase::data<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
  if (this == other) return;
  RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
    RepeatedPtrField* other) {
  if (this == other) return;
  RepeatedPtrFieldBase::InternalSwap(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
  RepeatedPtrFieldBase::SwapElements(index1, index2);
}

template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArena() const {
  return RepeatedPtrFieldBase::GetArena();
}

template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
  return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
  RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
  RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
  return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
  return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}

template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
  return RepeatedPtrFieldBase::ClearedCount();
}

template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
  return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
  return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
  return RepeatedPtrFieldBase::Reserve(new_size);
}

template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
  return RepeatedPtrFieldBase::Capacity();
}

// -------------------------------------------------------------------

namespace internal {

// STL-like iterator implementation for RepeatedPtrField.  You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template <typename Element>
class RepeatedPtrIterator {
 public:
  using iterator = RepeatedPtrIterator<Element>;
  using iterator_category = std::random_access_iterator_tag;
  using value_type = typename std::remove_const<Element>::type;
  using difference_type = std::ptrdiff_t;
  using pointer = Element*;
  using reference = Element&;

  RepeatedPtrIterator() : it_(NULL) {}
  explicit RepeatedPtrIterator(void* const* it) : it_(it) {}

  // Allow "upcasting" from RepeatedPtrIterator<T**> to
  // RepeatedPtrIterator<const T*const*>.
  template <typename OtherElement>
  RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
      : it_(other.it_) {
    // Force a compiler error if the other type is not convertible to ours.
    if (false) {
      implicit_cast<Element*>(static_cast<OtherElement*>(nullptr));
    }
  }

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
  pointer operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() {
    ++it_;
    return *this;
  }
  iterator operator++(int) { return iterator(it_++); }
  iterator& operator--() {
    --it_;
    return *this;
  }
  iterator operator--(int) { return iterator(it_--); }

  // equality_comparable
  bool operator==(const iterator& x) const { return it_ == x.it_; }
  bool operator!=(const iterator& x) const { return it_ != x.it_; }

  // less_than_comparable
  bool operator<(const iterator& x) const { return it_ < x.it_; }
  bool operator<=(const iterator& x) const { return it_ <= x.it_; }
  bool operator>(const iterator& x) const { return it_ > x.it_; }
  bool operator>=(const iterator& x) const { return it_ >= x.it_; }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, const difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(const difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  difference_type operator-(const iterator& x) const { return it_ - x.it_; }

 private:
  template <typename OtherElement>
  friend class RepeatedPtrIterator;

  // The internal iterator.
  void* const* it_;
};

// Provide an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator.  It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator {
 public:
  using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
  using iterator_category = std::random_access_iterator_tag;
  using value_type = typename std::remove_const<Element>::type;
  using difference_type = std::ptrdiff_t;
  using pointer = Element*;
  using reference = Element&;

  RepeatedPtrOverPtrsIterator() : it_(NULL) {}
  explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(it_); }
  pointer operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() {
    ++it_;
    return *this;
  }
  iterator operator++(int) { return iterator(it_++); }
  iterator& operator--() {
    --it_;
    return *this;
  }
  iterator operator--(int) { return iterator(it_--); }

  // equality_comparable
  bool operator==(const iterator& x) const { return it_ == x.it_; }
  bool operator!=(const iterator& x) const { return it_ != x.it_; }

  // less_than_comparable
  bool operator<(const iterator& x) const { return it_ < x.it_; }
  bool operator<=(const iterator& x) const { return it_ <= x.it_; }
  bool operator>(const iterator& x) const { return it_ > x.it_; }
  bool operator>=(const iterator& x) const { return it_ >= x.it_; }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  difference_type operator-(const iterator& x) const { return it_ - x.it_; }

 private:
  template <typename OtherElement>
  friend class RepeatedPtrIterator;

  // The internal iterator.
  VoidPtr* it_;
};

void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
  GOOGLE_DCHECK(this != other);
  GOOGLE_DCHECK(GetArena() == other->GetArena());

  // Swap all fields at once.
  static_assert(std::is_standard_layout<RepeatedPtrFieldBase>::value,
                "offsetof() requires standard layout before c++17");
  internal::memswap<offsetof(RepeatedPtrFieldBase, rep_) + sizeof(this->rep_) -
                    offsetof(RepeatedPtrFieldBase, current_size_)>(
      reinterpret_cast<char*>(this) +
          offsetof(RepeatedPtrFieldBase, current_size_),
      reinterpret_cast<char*>(other) +
          offsetof(RepeatedPtrFieldBase, current_size_));
}

}  // namespace internal

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const {
  return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const {
  return end();
}

template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
  return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
  return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
  return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
  return const_pointer_iterator(
      const_cast<const void* const*>(raw_data() + size()));
}

// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
//   std::copy(some_sequence.begin(), some_sequence.end(),
//             RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h

namespace internal {
// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit RepeatedFieldBackInsertIterator(
      RepeatedField<T>* const mutable_field)
      : field_(mutable_field) {}
  RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
    field_->Add(value);
    return *this;
  }
  RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
  RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
  RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedField<T>* field_;
};

// A back inserter for RepeatedPtrField objects.
template <typename T>
class RepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
    *field_->Add() = value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(
      const T* const ptr_to_value) {
    *field_->Add() = *ptr_to_value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
    *field_->Add() = std::move(value);
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
  RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
  RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template <typename T>
class AllocatedRepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit AllocatedRepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
      T* const ptr_to_value) {
    field_->AddAllocated(ptr_to_value);
    return *this;
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template <typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {}
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
      T const* const ptr_to_value) {
    field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
      int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

}  // namespace internal

// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
    RepeatedField<T>* const mutable_field) {
  return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}

// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template <typename T>
internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
//   RepeatedPtrField<T> temp_field;
//   temp_field.AddAllocated(new T);
//   ... // Do something with temp_field
//   temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released anymore
// causing a double delete. Using UnsafeArenaAddAllocated prevents this.
template <typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

// Extern declarations of common instantiations to reduce library bloat.
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
    RepeatedPtrField<std::string>;

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_REPEATED_FIELD_H__