message.h 60.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines Message, the abstract interface implemented by non-lite
// protocol message objects.  Although it's possible to implement this
// interface manually, most users will use the protocol compiler to
// generate implementations.
//
// Example usage:
//
// Say you have a message defined as:
//
//   message Foo {
//     optional string text = 1;
//     repeated int32 numbers = 2;
//   }
//
// Then, if you used the protocol compiler to generate a class from the above
// definition, you could use it like so:
//
//   std::string data;  // Will store a serialized version of the message.
//
//   {
//     // Create a message and serialize it.
//     Foo foo;
//     foo.set_text("Hello World!");
//     foo.add_numbers(1);
//     foo.add_numbers(5);
//     foo.add_numbers(42);
//
//     foo.SerializeToString(&data);
//   }
//
//   {
//     // Parse the serialized message and check that it contains the
//     // correct data.
//     Foo foo;
//     foo.ParseFromString(data);
//
//     assert(foo.text() == "Hello World!");
//     assert(foo.numbers_size() == 3);
//     assert(foo.numbers(0) == 1);
//     assert(foo.numbers(1) == 5);
//     assert(foo.numbers(2) == 42);
//   }
//
//   {
//     // Same as the last block, but do it dynamically via the Message
//     // reflection interface.
//     Message* foo = new Foo;
//     const Descriptor* descriptor = foo->GetDescriptor();
//
//     // Get the descriptors for the fields we're interested in and verify
//     // their types.
//     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
//     assert(text_field != nullptr);
//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
//     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
//     const FieldDescriptor* numbers_field = descriptor->
//                                            FindFieldByName("numbers");
//     assert(numbers_field != nullptr);
//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
//     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
//
//     // Parse the message.
//     foo->ParseFromString(data);
//
//     // Use the reflection interface to examine the contents.
//     const Reflection* reflection = foo->GetReflection();
//     assert(reflection->GetString(*foo, text_field) == "Hello World!");
//     assert(reflection->FieldSize(*foo, numbers_field) == 3);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
//
//     delete foo;
//   }

#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
#define GOOGLE_PROTOBUF_MESSAGE_H__

#include <iosfwd>
#include <string>
#include <type_traits>
#include <vector>

#include <google/protobuf/stubs/casts.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/port.h>


#define GOOGLE_PROTOBUF_HAS_ONEOF
#define GOOGLE_PROTOBUF_HAS_ARENAS

#include <google/protobuf/port_def.inc>

#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif

namespace google {
namespace protobuf {

// Defined in this file.
class Message;
class Reflection;
class MessageFactory;

// Defined in other files.
class AssignDescriptorsHelper;
class DynamicMessageFactory;
class MapKey;
class MapValueRef;
class MapIterator;
class MapReflectionTester;

namespace internal {
struct DescriptorTable;
class MapFieldBase;
}
class UnknownFieldSet;  // unknown_field_set.h
namespace io {
class ZeroCopyInputStream;   // zero_copy_stream.h
class ZeroCopyOutputStream;  // zero_copy_stream.h
class CodedInputStream;      // coded_stream.h
class CodedOutputStream;     // coded_stream.h
}  // namespace io
namespace python {
class MapReflectionFriend;  // scalar_map_container.h
}
namespace expr {
class CelMapReflectionFriend;  // field_backed_map_impl.cc
}

namespace internal {
class MapFieldPrinterHelper;  // text_format.cc
}


namespace internal {
class ReflectionAccessor;      // message.cc
class ReflectionOps;           // reflection_ops.h
class MapKeySorter;            // wire_format.cc
class WireFormat;              // wire_format.h
class MapFieldReflectionTest;  // map_test.cc
}  // namespace internal

template <typename T>
class RepeatedField;  // repeated_field.h

template <typename T>
class RepeatedPtrField;  // repeated_field.h

// A container to hold message metadata.
struct Metadata {
  const Descriptor* descriptor;
  const Reflection* reflection;
};

namespace internal {
template <class To>
inline To* GetPointerAtOffset(Message* message, uint32 offset) {
  return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
}

template <class To>
const To* GetConstPointerAtOffset(const Message* message, uint32 offset) {
  return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
                                     offset);
}

template <class To>
const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
  return *GetConstPointerAtOffset<To>(&message, offset);
}

bool CreateUnknownEnumValues(const FieldDescriptor* field);
}  // namespace internal

// Abstract interface for protocol messages.
//
// See also MessageLite, which contains most every-day operations.  Message
// adds descriptors and reflection on top of that.
//
// The methods of this class that are virtual but not pure-virtual have
// default implementations based on reflection.  Message classes which are
// optimized for speed will want to override these with faster implementations,
// but classes optimized for code size may be happy with keeping them.  See
// the optimize_for option in descriptor.proto.
//
// Users must not derive from this class. Only the protocol compiler and
// the internal library are allowed to create subclasses.
class PROTOBUF_EXPORT Message : public MessageLite {
 public:
  inline Message() {}

  // Basic Operations ------------------------------------------------

  // Construct a new instance of the same type.  Ownership is passed to the
  // caller.  (This is also defined in MessageLite, but is defined again here
  // for return-type covariance.)
  Message* New() const override = 0;

  // Construct a new instance on the arena. Ownership is passed to the caller
  // if arena is a nullptr. Default implementation allows for API compatibility
  // during the Arena transition.
  Message* New(Arena* arena) const override {
    Message* message = New();
    if (arena != nullptr) {
      arena->Own(message);
    }
    return message;
  }

  // Make this message into a copy of the given message.  The given message
  // must have the same descriptor, but need not necessarily be the same class.
  // By default this is just implemented as "Clear(); MergeFrom(from);".
  virtual void CopyFrom(const Message& from);

  // Merge the fields from the given message into this message.  Singular
  // fields will be overwritten, if specified in from, except for embedded
  // messages which will be merged.  Repeated fields will be concatenated.
  // The given message must be of the same type as this message (i.e. the
  // exact same class).
  virtual void MergeFrom(const Message& from);

  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
  // a nice error message.
  void CheckInitialized() const;

  // Slowly build a list of all required fields that are not set.
  // This is much, much slower than IsInitialized() as it is implemented
  // purely via reflection.  Generally, you should not call this unless you
  // have already determined that an error exists by calling IsInitialized().
  void FindInitializationErrors(std::vector<std::string>* errors) const;

  // Like FindInitializationErrors, but joins all the strings, delimited by
  // commas, and returns them.
  std::string InitializationErrorString() const override;

  // Clears all unknown fields from this message and all embedded messages.
  // Normally, if unknown tag numbers are encountered when parsing a message,
  // the tag and value are stored in the message's UnknownFieldSet and
  // then written back out when the message is serialized.  This allows servers
  // which simply route messages to other servers to pass through messages
  // that have new field definitions which they don't yet know about.  However,
  // this behavior can have security implications.  To avoid it, call this
  // method after parsing.
  //
  // See Reflection::GetUnknownFields() for more on unknown fields.
  virtual void DiscardUnknownFields();

  // Computes (an estimate of) the total number of bytes currently used for
  // storing the message in memory.  The default implementation calls the
  // Reflection object's SpaceUsed() method.
  //
  // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
  // using reflection (rather than the generated code implementation for
  // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
  // fields defined for the proto.
  virtual size_t SpaceUsedLong() const;

  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
  int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }

  // Debugging & Testing----------------------------------------------

  // Generates a human readable form of this message, useful for debugging
  // and other purposes.
  std::string DebugString() const;
  // Like DebugString(), but with less whitespace.
  std::string ShortDebugString() const;
  // Like DebugString(), but do not escape UTF-8 byte sequences.
  std::string Utf8DebugString() const;
  // Convenience function useful in GDB.  Prints DebugString() to stdout.
  void PrintDebugString() const;

  // Reflection-based methods ----------------------------------------
  // These methods are pure-virtual in MessageLite, but Message provides
  // reflection-based default implementations.

  std::string GetTypeName() const override;
  void Clear() override;

  // Returns whether all required fields have been set. Note that required
  // fields no longer exist starting in proto3.
  bool IsInitialized() const override;

  void CheckTypeAndMergeFrom(const MessageLite& other) override;
  // Reflective parser
  const char* _InternalParse(const char* ptr,
                             internal::ParseContext* ctx) override;
  size_t ByteSizeLong() const override;
  uint8* _InternalSerialize(uint8* target,
                            io::EpsCopyOutputStream* stream) const override;

 private:
  // This is called only by the default implementation of ByteSize(), to
  // update the cached size.  If you override ByteSize(), you do not need
  // to override this.  If you do not override ByteSize(), you MUST override
  // this; the default implementation will crash.
  //
  // The method is private because subclasses should never call it; only
  // override it.  Yes, C++ lets you do that.  Crazy, huh?
  virtual void SetCachedSize(int size) const;

 public:
  // Introspection ---------------------------------------------------


  // Get a non-owning pointer to a Descriptor for this message's type.  This
  // describes what fields the message contains, the types of those fields, etc.
  // This object remains property of the Message.
  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }

  // Get a non-owning pointer to the Reflection interface for this Message,
  // which can be used to read and modify the fields of the Message dynamically
  // (in other words, without knowing the message type at compile time).  This
  // object remains property of the Message.
  const Reflection* GetReflection() const { return GetMetadata().reflection; }

 protected:
  // Get a struct containing the metadata for the Message, which is used in turn
  // to implement GetDescriptor() and GetReflection() above.
  virtual Metadata GetMetadata() const = 0;

  inline explicit Message(Arena* arena) : MessageLite(arena) {}


 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
};

namespace internal {
// Forward-declare interfaces used to implement RepeatedFieldRef.
// These are protobuf internals that users shouldn't care about.
class RepeatedFieldAccessor;
}  // namespace internal

// Forward-declare RepeatedFieldRef templates. The second type parameter is
// used for SFINAE tricks. Users should ignore it.
template <typename T, typename Enable = void>
class RepeatedFieldRef;

template <typename T, typename Enable = void>
class MutableRepeatedFieldRef;

// This interface contains methods that can be used to dynamically access
// and modify the fields of a protocol message.  Their semantics are
// similar to the accessors the protocol compiler generates.
//
// To get the Reflection for a given Message, call Message::GetReflection().
//
// This interface is separate from Message only for efficiency reasons;
// the vast majority of implementations of Message will share the same
// implementation of Reflection (GeneratedMessageReflection,
// defined in generated_message.h), and all Messages of a particular class
// should share the same Reflection object (though you should not rely on
// the latter fact).
//
// There are several ways that these methods can be used incorrectly.  For
// example, any of the following conditions will lead to undefined
// results (probably assertion failures):
// - The FieldDescriptor is not a field of this message type.
// - The method called is not appropriate for the field's type.  For
//   each field type in FieldDescriptor::TYPE_*, there is only one
//   Get*() method, one Set*() method, and one Add*() method that is
//   valid for that type.  It should be obvious which (except maybe
//   for TYPE_BYTES, which are represented using strings in C++).
// - A Get*() or Set*() method for singular fields is called on a repeated
//   field.
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
//   field.
// - The Message object passed to any method is not of the right type for
//   this Reflection object (i.e. message.GetReflection() != reflection).
//
// You might wonder why there is not any abstract representation for a field
// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
// returns "const Field&", where "Field" is some class with accessors like
// "GetInt32Value()".  The problem is that someone would have to deal with
// allocating these Field objects.  For generated message classes, having to
// allocate space for an additional object to wrap every field would at least
// double the message's memory footprint, probably worse.  Allocating the
// objects on-demand, on the other hand, would be expensive and prone to
// memory leaks.  So, instead we ended up with this flat interface.
class PROTOBUF_EXPORT Reflection final {
 public:
  // Get the UnknownFieldSet for the message.  This contains fields which
  // were seen when the Message was parsed but were not recognized according
  // to the Message's definition.
  const UnknownFieldSet& GetUnknownFields(const Message& message) const;
  // Get a mutable pointer to the UnknownFieldSet for the message.  This
  // contains fields which were seen when the Message was parsed but were not
  // recognized according to the Message's definition.
  UnknownFieldSet* MutableUnknownFields(Message* message) const;

  // Estimate the amount of memory used by the message object.
  size_t SpaceUsedLong(const Message& message) const;

  PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
  int SpaceUsed(const Message& message) const {
    return internal::ToIntSize(SpaceUsedLong(message));
  }

  // Check if the given non-repeated field is set.
  bool HasField(const Message& message, const FieldDescriptor* field) const;

  // Get the number of elements of a repeated field.
  int FieldSize(const Message& message, const FieldDescriptor* field) const;

  // Clear the value of a field, so that HasField() returns false or
  // FieldSize() returns zero.
  void ClearField(Message* message, const FieldDescriptor* field) const;

  // Check if the oneof is set. Returns true if any field in oneof
  // is set, false otherwise.
  bool HasOneof(const Message& message,
                const OneofDescriptor* oneof_descriptor) const;

  void ClearOneof(Message* message,
                  const OneofDescriptor* oneof_descriptor) const;

  // Returns the field descriptor if the oneof is set. nullptr otherwise.
  const FieldDescriptor* GetOneofFieldDescriptor(
      const Message& message, const OneofDescriptor* oneof_descriptor) const;

  // Removes the last element of a repeated field.
  // We don't provide a way to remove any element other than the last
  // because it invites inefficient use, such as O(n^2) filtering loops
  // that should have been O(n).  If you want to remove an element other
  // than the last, the best way to do it is to re-arrange the elements
  // (using Swap()) so that the one you want removed is at the end, then
  // call RemoveLast().
  void RemoveLast(Message* message, const FieldDescriptor* field) const;
  // Removes the last element of a repeated message field, and returns the
  // pointer to the caller.  Caller takes ownership of the returned pointer.
  Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;

  // Swap the complete contents of two messages.
  void Swap(Message* message1, Message* message2) const;

  // Swap fields listed in fields vector of two messages.
  void SwapFields(Message* message1, Message* message2,
                  const std::vector<const FieldDescriptor*>& fields) const;

  // Swap two elements of a repeated field.
  void SwapElements(Message* message, const FieldDescriptor* field, int index1,
                    int index2) const;

  // List all fields of the message which are currently set, except for unknown
  // fields, but including extension known to the parser (i.e. compiled in).
  // Singular fields will only be listed if HasField(field) would return true
  // and repeated fields will only be listed if FieldSize(field) would return
  // non-zero.  Fields (both normal fields and extension fields) will be listed
  // ordered by field number.
  // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
  // access to fields/extensions unknown to the parser.
  void ListFields(const Message& message,
                  std::vector<const FieldDescriptor*>* output) const;

  // Singular field getters ------------------------------------------
  // These get the value of a non-repeated field.  They return the default
  // value for fields that aren't set.

  int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
  int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
  uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
  uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
  float GetFloat(const Message& message, const FieldDescriptor* field) const;
  double GetDouble(const Message& message, const FieldDescriptor* field) const;
  bool GetBool(const Message& message, const FieldDescriptor* field) const;
  std::string GetString(const Message& message,
                        const FieldDescriptor* field) const;
  const EnumValueDescriptor* GetEnum(const Message& message,
                                     const FieldDescriptor* field) const;

  // GetEnumValue() returns an enum field's value as an integer rather than
  // an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  int GetEnumValue(const Message& message, const FieldDescriptor* field) const;

  // See MutableMessage() for the meaning of the "factory" parameter.
  const Message& GetMessage(const Message& message,
                            const FieldDescriptor* field,
                            MessageFactory* factory = nullptr) const;

  // Get a string value without copying, if possible.
  //
  // GetString() necessarily returns a copy of the string.  This can be
  // inefficient when the std::string is already stored in a std::string object
  // in the underlying message.  GetStringReference() will return a reference to
  // the underlying std::string in this case.  Otherwise, it will copy the
  // string into *scratch and return that.
  //
  // Note:  It is perfectly reasonable and useful to write code like:
  //     str = reflection->GetStringReference(message, field, &str);
  //   This line would ensure that only one copy of the string is made
  //   regardless of the field's underlying representation.  When initializing
  //   a newly-constructed string, though, it's just as fast and more
  //   readable to use code like:
  //     std::string str = reflection->GetString(message, field);
  const std::string& GetStringReference(const Message& message,
                                        const FieldDescriptor* field,
                                        std::string* scratch) const;


  // Singular field mutators -----------------------------------------
  // These mutate the value of a non-repeated field.

  void SetInt32(Message* message, const FieldDescriptor* field,
                int32 value) const;
  void SetInt64(Message* message, const FieldDescriptor* field,
                int64 value) const;
  void SetUInt32(Message* message, const FieldDescriptor* field,
                 uint32 value) const;
  void SetUInt64(Message* message, const FieldDescriptor* field,
                 uint64 value) const;
  void SetFloat(Message* message, const FieldDescriptor* field,
                float value) const;
  void SetDouble(Message* message, const FieldDescriptor* field,
                 double value) const;
  void SetBool(Message* message, const FieldDescriptor* field,
               bool value) const;
  void SetString(Message* message, const FieldDescriptor* field,
                 std::string value) const;
  void SetEnum(Message* message, const FieldDescriptor* field,
               const EnumValueDescriptor* value) const;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // For proto3 this is just setting the enum field to the value specified, for
  // proto2 it's more complicated. If value is a known enum value the field is
  // set as usual. If the value is unknown then it is added to the unknown field
  // set. Note this matches the behavior of parsing unknown enum values.
  // If multiple calls with unknown values happen than they are all added to the
  // unknown field set in order of the calls.
  void SetEnumValue(Message* message, const FieldDescriptor* field,
                    int value) const;

  // Get a mutable pointer to a field with a message type.  If a MessageFactory
  // is provided, it will be used to construct instances of the sub-message;
  // otherwise, the default factory is used.  If the field is an extension that
  // does not live in the same pool as the containing message's descriptor (e.g.
  // it lives in an overlay pool), then a MessageFactory must be provided.
  // If you have no idea what that meant, then you probably don't need to worry
  // about it (don't provide a MessageFactory).  WARNING:  If the
  // FieldDescriptor is for a compiled-in extension, then
  // factory->GetPrototype(field->message_type()) MUST return an instance of
  // the compiled-in class for this type, NOT DynamicMessage.
  Message* MutableMessage(Message* message, const FieldDescriptor* field,
                          MessageFactory* factory = nullptr) const;
  // Replaces the message specified by 'field' with the already-allocated object
  // sub_message, passing ownership to the message.  If the field contained a
  // message, that message is deleted.  If sub_message is nullptr, the field is
  // cleared.
  void SetAllocatedMessage(Message* message, Message* sub_message,
                           const FieldDescriptor* field) const;
  // Releases the message specified by 'field' and returns the pointer,
  // ReleaseMessage() will return the message the message object if it exists.
  // Otherwise, it may or may not return nullptr.  In any case, if the return
  // value is non-null, the caller takes ownership of the pointer.
  // If the field existed (HasField() is true), then the returned pointer will
  // be the same as the pointer returned by MutableMessage().
  // This function has the same effect as ClearField().
  Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
                          MessageFactory* factory = nullptr) const;


  // Repeated field getters ------------------------------------------
  // These get the value of one element of a repeated field.

  int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
                         int index) const;
  int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
                         int index) const;
  uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
                           int index) const;
  uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
                           int index) const;
  float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
                         int index) const;
  double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
                           int index) const;
  bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
                       int index) const;
  std::string GetRepeatedString(const Message& message,
                                const FieldDescriptor* field, int index) const;
  const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
                                             const FieldDescriptor* field,
                                             int index) const;
  // GetRepeatedEnumValue() returns an enum field's value as an integer rather
  // than an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
                           int index) const;
  const Message& GetRepeatedMessage(const Message& message,
                                    const FieldDescriptor* field,
                                    int index) const;

  // See GetStringReference(), above.
  const std::string& GetRepeatedStringReference(const Message& message,
                                                const FieldDescriptor* field,
                                                int index,
                                                std::string* scratch) const;


  // Repeated field mutators -----------------------------------------
  // These mutate the value of one element of a repeated field.

  void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
                        int index, int32 value) const;
  void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
                        int index, int64 value) const;
  void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
                         int index, uint32 value) const;
  void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
                         int index, uint64 value) const;
  void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
                        int index, float value) const;
  void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
                         int index, double value) const;
  void SetRepeatedBool(Message* message, const FieldDescriptor* field,
                       int index, bool value) const;
  void SetRepeatedString(Message* message, const FieldDescriptor* field,
                         int index, std::string value) const;
  void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
                       int index, const EnumValueDescriptor* value) const;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // For proto3 this is just setting the enum field to the value specified, for
  // proto2 it's more complicated. If value is a known enum value the field is
  // set as usual. If the value is unknown then it is added to the unknown field
  // set. Note this matches the behavior of parsing unknown enum values.
  // If multiple calls with unknown values happen than they are all added to the
  // unknown field set in order of the calls.
  void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
                            int index, int value) const;
  // Get a mutable pointer to an element of a repeated field with a message
  // type.
  Message* MutableRepeatedMessage(Message* message,
                                  const FieldDescriptor* field,
                                  int index) const;


  // Repeated field adders -------------------------------------------
  // These add an element to a repeated field.

  void AddInt32(Message* message, const FieldDescriptor* field,
                int32 value) const;
  void AddInt64(Message* message, const FieldDescriptor* field,
                int64 value) const;
  void AddUInt32(Message* message, const FieldDescriptor* field,
                 uint32 value) const;
  void AddUInt64(Message* message, const FieldDescriptor* field,
                 uint64 value) const;
  void AddFloat(Message* message, const FieldDescriptor* field,
                float value) const;
  void AddDouble(Message* message, const FieldDescriptor* field,
                 double value) const;
  void AddBool(Message* message, const FieldDescriptor* field,
               bool value) const;
  void AddString(Message* message, const FieldDescriptor* field,
                 std::string value) const;
  void AddEnum(Message* message, const FieldDescriptor* field,
               const EnumValueDescriptor* value) const;
  // Add an integer value to a repeated enum field rather than
  // EnumValueDescriptor. For proto3 this is just setting the enum field to the
  // value specified, for proto2 it's more complicated. If value is a known enum
  // value the field is set as usual. If the value is unknown then it is added
  // to the unknown field set. Note this matches the behavior of parsing unknown
  // enum values. If multiple calls with unknown values happen than they are all
  // added to the unknown field set in order of the calls.
  void AddEnumValue(Message* message, const FieldDescriptor* field,
                    int value) const;
  // See MutableMessage() for comments on the "factory" parameter.
  Message* AddMessage(Message* message, const FieldDescriptor* field,
                      MessageFactory* factory = nullptr) const;

  // Appends an already-allocated object 'new_entry' to the repeated field
  // specified by 'field' passing ownership to the message.
  void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
                           Message* new_entry) const;


  // Get a RepeatedFieldRef object that can be used to read the underlying
  // repeated field. The type parameter T must be set according to the
  // field's cpp type. The following table shows the mapping from cpp type
  // to acceptable T.
  //
  //   field->cpp_type()      T
  //   CPPTYPE_INT32        int32
  //   CPPTYPE_UINT32       uint32
  //   CPPTYPE_INT64        int64
  //   CPPTYPE_UINT64       uint64
  //   CPPTYPE_DOUBLE       double
  //   CPPTYPE_FLOAT        float
  //   CPPTYPE_BOOL         bool
  //   CPPTYPE_ENUM         generated enum type or int32
  //   CPPTYPE_STRING       std::string
  //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
  //
  // A RepeatedFieldRef object can be copied and the resulted object will point
  // to the same repeated field in the same message. The object can be used as
  // long as the message is not destroyed.
  //
  // Note that to use this method users need to include the header file
  // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef
  // class templates).
  template <typename T>
  RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
                                          const FieldDescriptor* field) const;

  // Like GetRepeatedFieldRef() but return an object that can also be used
  // manipulate the underlying repeated field.
  template <typename T>
  MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
      Message* message, const FieldDescriptor* field) const;

  // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
  // access. The following repeated field accesors will be removed in the
  // future.
  //
  // Repeated field accessors  -------------------------------------------------
  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
  // access to the data in a RepeatedField.  The methods below provide aggregate
  // access by exposing the RepeatedField object itself with the Message.
  // Applying these templates to inappropriate types will lead to an undefined
  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
  //
  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
  const RepeatedField<T>& GetRepeatedField(const Message& msg,
                                           const FieldDescriptor* d) const {
    return GetRepeatedFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
  RepeatedField<T>* MutableRepeatedField(Message* msg,
                                         const FieldDescriptor* d) const {
    return MutableRepeatedFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = std::string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
  const RepeatedPtrField<T>& GetRepeatedPtrField(
      const Message& msg, const FieldDescriptor* d) const {
    return GetRepeatedPtrFieldInternal<T>(msg, d);
  }

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = std::string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template <typename T>
  PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
  RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
                                               const FieldDescriptor* d) const {
    return MutableRepeatedPtrFieldInternal<T>(msg, d);
  }

  // Extensions ----------------------------------------------------------------

  // Try to find an extension of this message type by fully-qualified field
  // name.  Returns nullptr if no extension is known for this name or number.
  const FieldDescriptor* FindKnownExtensionByName(
      const std::string& name) const;

  // Try to find an extension of this message type by field number.
  // Returns nullptr if no extension is known for this name or number.
  const FieldDescriptor* FindKnownExtensionByNumber(int number) const;

  // Feature Flags -------------------------------------------------------------

  // Does this message support storing arbitrary integer values in enum fields?
  // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
  // take arbitrary integer values, and the legacy GetEnum() getter will
  // dynamically create an EnumValueDescriptor for any integer value without
  // one. If |false|, setting an unknown enum value via the integer-based
  // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
  //
  // Generic code that uses reflection to handle messages with enum fields
  // should check this flag before using the integer-based setter, and either
  // downgrade to a compatible value or use the UnknownFieldSet if not. For
  // example:
  //
  //   int new_value = GetValueFromApplicationLogic();
  //   if (reflection->SupportsUnknownEnumValues()) {
  //     reflection->SetEnumValue(message, field, new_value);
  //   } else {
  //     if (field_descriptor->enum_type()->
  //             FindValueByNumber(new_value) != nullptr) {
  //       reflection->SetEnumValue(message, field, new_value);
  //     } else if (emit_unknown_enum_values) {
  //       reflection->MutableUnknownFields(message)->AddVarint(
  //           field->number(), new_value);
  //     } else {
  //       // convert value to a compatible/default value.
  //       new_value = CompatibleDowngrade(new_value);
  //       reflection->SetEnumValue(message, field, new_value);
  //     }
  //   }
  bool SupportsUnknownEnumValues() const;

  // Returns the MessageFactory associated with this message.  This can be
  // useful for determining if a message is a generated message or not, for
  // example:
  //   if (message->GetReflection()->GetMessageFactory() ==
  //       google::protobuf::MessageFactory::generated_factory()) {
  //     // This is a generated message.
  //   }
  // It can also be used to create more messages of this type, though
  // Message::New() is an easier way to accomplish this.
  MessageFactory* GetMessageFactory() const;

 private:
  template <typename T>
  const RepeatedField<T>& GetRepeatedFieldInternal(
      const Message& message, const FieldDescriptor* field) const;
  template <typename T>
  RepeatedField<T>* MutableRepeatedFieldInternal(
      Message* message, const FieldDescriptor* field) const;
  template <typename T>
  const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
      const Message& message, const FieldDescriptor* field) const;
  template <typename T>
  RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
      Message* message, const FieldDescriptor* field) const;
  // Obtain a pointer to a Repeated Field Structure and do some type checking:
  //   on field->cpp_type(),
  //   on field->field_option().ctype() (if ctype >= 0)
  //   of field->message_type() (if message_type != nullptr).
  // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
  void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
                                FieldDescriptor::CppType, int ctype,
                                const Descriptor* message_type) const;

  const void* GetRawRepeatedField(const Message& message,
                                  const FieldDescriptor* field,
                                  FieldDescriptor::CppType cpptype, int ctype,
                                  const Descriptor* message_type) const;

  // The following methods are used to implement (Mutable)RepeatedFieldRef.
  // A Ref object will store a raw pointer to the repeated field data (obtained
  // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
  // RepeatedFieldAccessor) which will be used to access the raw data.

  // Returns a raw pointer to the repeated field
  //
  // "cpp_type" and "message_type" are deduced from the type parameter T passed
  // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
  // "message_type" should be set to its descriptor. Otherwise "message_type"
  // should be set to nullptr. Implementations of this method should check
  // whether "cpp_type"/"message_type" is consistent with the actual type of the
  // field. We use 1 routine rather than 2 (const vs mutable) because it is
  // protected and it doesn't change the message.
  void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
                          FieldDescriptor::CppType cpp_type,
                          const Descriptor* message_type) const;

  // The returned pointer should point to a singleton instance which implements
  // the RepeatedFieldAccessor interface.
  const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
      const FieldDescriptor* field) const;

  const Descriptor* const descriptor_;
  const internal::ReflectionSchema schema_;
  const DescriptorPool* const descriptor_pool_;
  MessageFactory* const message_factory_;

  // Last non weak field index. This is an optimization when most weak fields
  // are at the end of the containing message. If a message proto doesn't
  // contain weak fields, then this field equals descriptor_->field_count().
  int last_non_weak_field_index_;

  template <typename T, typename Enable>
  friend class RepeatedFieldRef;
  template <typename T, typename Enable>
  friend class MutableRepeatedFieldRef;
  friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
  friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
  friend class DynamicMessageFactory;
  friend class python::MapReflectionFriend;
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
  friend class expr::CelMapReflectionFriend;
  friend class internal::MapFieldReflectionTest;
  friend class internal::MapKeySorter;
  friend class internal::WireFormat;
  friend class internal::ReflectionOps;
  // Needed for implementing text format for map.
  friend class internal::MapFieldPrinterHelper;

  Reflection(const Descriptor* descriptor,
             const internal::ReflectionSchema& schema,
             const DescriptorPool* pool, MessageFactory* factory);

  // Special version for specialized implementations of string.  We can't
  // call MutableRawRepeatedField directly here because we don't have access to
  // FieldOptions::* which are defined in descriptor.pb.h.  Including that
  // file here is not possible because it would cause a circular include cycle.
  // We use 1 routine rather than 2 (const vs mutable) because it is private
  // and mutable a repeated string field doesn't change the message.
  void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
                                 bool is_string) const;

  friend class MapReflectionTester;
  // Returns true if key is in map. Returns false if key is not in map field.
  bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
                      const MapKey& key) const;

  // If key is in map field: Saves the value pointer to val and returns
  // false. If key in not in map field: Insert the key into map, saves
  // value pointer to val and returns true.
  bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
                              const MapKey& key, MapValueRef* val) const;

  // Delete and returns true if key is in the map field. Returns false
  // otherwise.
  bool DeleteMapValue(Message* message, const FieldDescriptor* field,
                      const MapKey& key) const;

  // Returns a MapIterator referring to the first element in the map field.
  // If the map field is empty, this function returns the same as
  // reflection::MapEnd. Mutation to the field may invalidate the iterator.
  MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;

  // Returns a MapIterator referring to the theoretical element that would
  // follow the last element in the map field. It does not point to any
  // real element. Mutation to the field may invalidate the iterator.
  MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;

  // Get the number of <key, value> pair of a map field. The result may be
  // different from FieldSize which can have duplicate keys.
  int MapSize(const Message& message, const FieldDescriptor* field) const;

  // Help method for MapIterator.
  friend class MapIterator;
  friend class WireFormatForMapFieldTest;
  internal::MapFieldBase* MutableMapData(Message* message,
                                         const FieldDescriptor* field) const;

  const internal::MapFieldBase* GetMapData(const Message& message,
                                           const FieldDescriptor* field) const;

  template <class T>
  const T& GetRawNonOneof(const Message& message,
                          const FieldDescriptor* field) const;
  template <class T>
  T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;

  template <typename Type>
  const Type& GetRaw(const Message& message,
                     const FieldDescriptor* field) const;
  template <typename Type>
  inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
  template <typename Type>
  const Type& DefaultRaw(const FieldDescriptor* field) const;

  inline const uint32* GetHasBits(const Message& message) const;
  inline uint32* MutableHasBits(Message* message) const;
  inline uint32 GetOneofCase(const Message& message,
                             const OneofDescriptor* oneof_descriptor) const;
  inline uint32* MutableOneofCase(
      Message* message, const OneofDescriptor* oneof_descriptor) const;
  inline const internal::ExtensionSet& GetExtensionSet(
      const Message& message) const;
  internal::ExtensionSet* MutableExtensionSet(Message* message) const;
  inline Arena* GetArena(Message* message) const;

  inline const internal::InternalMetadata& GetInternalMetadata(
      const Message& message) const;

  internal::InternalMetadata* MutableInternalMetadata(Message* message) const;

  inline bool IsInlined(const FieldDescriptor* field) const;

  inline bool HasBit(const Message& message,
                     const FieldDescriptor* field) const;
  inline void SetBit(Message* message, const FieldDescriptor* field) const;
  inline void ClearBit(Message* message, const FieldDescriptor* field) const;
  inline void SwapBit(Message* message1, Message* message2,
                      const FieldDescriptor* field) const;

  // This function only swaps the field. Should swap corresponding has_bit
  // before or after using this function.
  void SwapField(Message* message1, Message* message2,
                 const FieldDescriptor* field) const;

  void SwapOneofField(Message* message1, Message* message2,
                      const OneofDescriptor* oneof_descriptor) const;

  inline bool HasOneofField(const Message& message,
                            const FieldDescriptor* field) const;
  inline void SetOneofCase(Message* message,
                           const FieldDescriptor* field) const;
  inline void ClearOneofField(Message* message,
                              const FieldDescriptor* field) const;

  template <typename Type>
  inline const Type& GetField(const Message& message,
                              const FieldDescriptor* field) const;
  template <typename Type>
  inline void SetField(Message* message, const FieldDescriptor* field,
                       const Type& value) const;
  template <typename Type>
  inline Type* MutableField(Message* message,
                            const FieldDescriptor* field) const;
  template <typename Type>
  inline const Type& GetRepeatedField(const Message& message,
                                      const FieldDescriptor* field,
                                      int index) const;
  template <typename Type>
  inline const Type& GetRepeatedPtrField(const Message& message,
                                         const FieldDescriptor* field,
                                         int index) const;
  template <typename Type>
  inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
                               int index, Type value) const;
  template <typename Type>
  inline Type* MutableRepeatedField(Message* message,
                                    const FieldDescriptor* field,
                                    int index) const;
  template <typename Type>
  inline void AddField(Message* message, const FieldDescriptor* field,
                       const Type& value) const;
  template <typename Type>
  inline Type* AddField(Message* message, const FieldDescriptor* field) const;

  int GetExtensionNumberOrDie(const Descriptor* type) const;

  // Internal versions of EnumValue API perform no checking. Called after checks
  // by public methods.
  void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
                            int value) const;
  void SetRepeatedEnumValueInternal(Message* message,
                                    const FieldDescriptor* field, int index,
                                    int value) const;
  void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
                            int value) const;

  Message* UnsafeArenaReleaseMessage(Message* message,
                                     const FieldDescriptor* field,
                                     MessageFactory* factory = nullptr) const;

  void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
                                      const FieldDescriptor* field) const;

  friend inline  // inline so nobody can call this function.
      void
      RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
  friend inline const char* ParseLenDelim(int field_number,
                                          const FieldDescriptor* field,
                                          Message* msg,
                                          const Reflection* reflection,
                                          const char* ptr,
                                          internal::ParseContext* ctx);
  friend inline const char* ParsePackedField(const FieldDescriptor* field,
                                             Message* msg,
                                             const Reflection* reflection,
                                             const char* ptr,
                                             internal::ParseContext* ctx);

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
};

// Abstract interface for a factory for message objects.
class PROTOBUF_EXPORT MessageFactory {
 public:
  inline MessageFactory() {}
  virtual ~MessageFactory();

  // Given a Descriptor, gets or constructs the default (prototype) Message
  // of that type.  You can then call that message's New() method to construct
  // a mutable message of that type.
  //
  // Calling this method twice with the same Descriptor returns the same
  // object.  The returned object remains property of the factory.  Also, any
  // objects created by calling the prototype's New() method share some data
  // with the prototype, so these must be destroyed before the MessageFactory
  // is destroyed.
  //
  // The given descriptor must outlive the returned message, and hence must
  // outlive the MessageFactory.
  //
  // Some implementations do not support all types.  GetPrototype() will
  // return nullptr if the descriptor passed in is not supported.
  //
  // This method may or may not be thread-safe depending on the implementation.
  // Each implementation should document its own degree thread-safety.
  virtual const Message* GetPrototype(const Descriptor* type) = 0;

  // Gets a MessageFactory which supports all generated, compiled-in messages.
  // In other words, for any compiled-in type FooMessage, the following is true:
  //   MessageFactory::generated_factory()->GetPrototype(
  //     FooMessage::descriptor()) == FooMessage::default_instance()
  // This factory supports all types which are found in
  // DescriptorPool::generated_pool().  If given a descriptor from any other
  // pool, GetPrototype() will return nullptr.  (You can also check if a
  // descriptor is for a generated message by checking if
  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
  //
  // This factory is 100% thread-safe; calling GetPrototype() does not modify
  // any shared data.
  //
  // This factory is a singleton.  The caller must not delete the object.
  static MessageFactory* generated_factory();

  // For internal use only:  Registers a .proto file at static initialization
  // time, to be placed in generated_factory.  The first time GetPrototype()
  // is called with a descriptor from this file, |register_messages| will be
  // called, with the file name as the parameter.  It must call
  // InternalRegisterGeneratedMessage() (below) to register each message type
  // in the file.  This strange mechanism is necessary because descriptors are
  // built lazily, so we can't register types by their descriptor until we
  // know that the descriptor exists.  |filename| must be a permanent string.
  static void InternalRegisterGeneratedFile(
      const google::protobuf::internal::DescriptorTable* table);

  // For internal use only:  Registers a message type.  Called only by the
  // functions which are registered with InternalRegisterGeneratedFile(),
  // above.
  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
                                               const Message* prototype);


 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
};

#define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
  template <>                                                      \
  PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
  Reflection::GetRepeatedFieldInternal<TYPE>(                      \
      const Message& message, const FieldDescriptor* field) const; \
                                                                   \
  template <>                                                      \
  PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
  Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
      Message * message, const FieldDescriptor* field) const;

DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)
DECLARE_GET_REPEATED_FIELD(uint32)
DECLARE_GET_REPEATED_FIELD(uint64)
DECLARE_GET_REPEATED_FIELD(float)
DECLARE_GET_REPEATED_FIELD(double)
DECLARE_GET_REPEATED_FIELD(bool)

#undef DECLARE_GET_REPEATED_FIELD

// Tries to downcast this message to a generated message type.  Returns nullptr
// if this class is not an instance of T.  This works even if RTTI is disabled.
//
// This also has the effect of creating a strong reference to T that will
// prevent the linker from stripping it out at link time.  This can be important
// if you are using a DynamicMessageFactory that delegates to the generated
// factory.
template <typename T>
const T* DynamicCastToGenerated(const Message* from) {
  // Compile-time assert that T is a generated type that has a
  // default_instance() accessor, but avoid actually calling it.
  const T& (*get_default_instance)() = &T::default_instance;
  (void)get_default_instance;

  // Compile-time assert that T is a subclass of google::protobuf::Message.
  const Message* unused = static_cast<T*>(nullptr);
  (void)unused;

#if PROTOBUF_RTTI
  return dynamic_cast<const T*>(from);
#else
  bool ok = T::default_instance().GetReflection() == from->GetReflection();
  return ok ? down_cast<const T*>(from) : nullptr;
#endif
}

template <typename T>
T* DynamicCastToGenerated(Message* from) {
  const Message* message_const = from;
  return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
}

// Call this function to ensure that this message's reflection is linked into
// the binary:
//
//   google::protobuf::LinkMessageReflection<FooMessage>();
//
// This will ensure that the following lookup will succeed:
//
//   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
//
// As a side-effect, it will also guarantee that anything else from the same
// .proto file will also be available for lookup in the generated pool.
//
// This function does not actually register the message, so it does not need
// to be called before the lookup.  However it does need to occur in a function
// that cannot be stripped from the binary (ie. it must be reachable from main).
//
// Best practice is to call this function as close as possible to where the
// reflection is actually needed.  This function is very cheap to call, so you
// should not need to worry about its runtime overhead except in the tightest
// of loops (on x86-64 it compiles into two "mov" instructions).
template <typename T>
void LinkMessageReflection() {
  internal::StrongReference(T::default_instance);
}

// =============================================================================
// Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
// specializations for <std::string>, <StringPieceField> and <Message> and
// handle everything else with the default template which will match any type
// having a method with signature "static const google::protobuf::Descriptor*
// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.

template <>
inline const RepeatedPtrField<std::string>&
Reflection::GetRepeatedPtrFieldInternal<std::string>(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<RepeatedPtrField<std::string>*>(
      MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
}

template <>
inline RepeatedPtrField<std::string>*
Reflection::MutableRepeatedPtrFieldInternal<std::string>(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<std::string>*>(
      MutableRawRepeatedString(message, field, true));
}


// -----

template <>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
}

template <>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
      message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
}

template <typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<PB>*>(
      GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
                          PB::default_instance().GetDescriptor()));
}

template <typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<PB>*>(
      MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
                              -1, PB::default_instance().GetDescriptor()));
}

template <typename Type>
const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
  return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
}
}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>

#endif  // GOOGLE_PROTOBUF_MESSAGE_H__