LinearProgramming.java 5.14 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.examples;

import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/**
 * Linear programming example that shows how to use the API.
 *
 */

public class LinearProgramming {
  static {
    System.loadLibrary("jniortools");
  }

  private static MPSolver createSolver(String solverType) {
    try {
      return new MPSolver(
          "LinearProgrammingExample", MPSolver.OptimizationProblemType.valueOf(solverType));
    } catch (java.lang.IllegalArgumentException e) {
      return null;
    }
  }

  private static void runLinearProgrammingExample(String solverType, boolean printModel) {
    MPSolver solver = createSolver(solverType);
    if (solver == null) {
      System.out.println("Could not create solver " + solverType);
      return;
    }
    double infinity = java.lang.Double.POSITIVE_INFINITY;
    // x1, x2 and x3 are continuous non-negative variables.
    MPVariable x1 = solver.makeNumVar(0.0, infinity, "x1");
    MPVariable x2 = solver.makeNumVar(0.0, infinity, "x2");
    MPVariable x3 = solver.makeNumVar(0.0, infinity, "x3");

    // Maximize 10 * x1 + 6 * x2 + 4 * x3.
    MPObjective objective = solver.objective();
    objective.setCoefficient(x1, 10);
    objective.setCoefficient(x2, 6);
    objective.setCoefficient(x3, 4);
    objective.setMaximization();

    // x1 + x2 + x3 <= 100.
    MPConstraint c0 = solver.makeConstraint(-infinity, 100.0);
    c0.setCoefficient(x1, 1);
    c0.setCoefficient(x2, 1);
    c0.setCoefficient(x3, 1);

    // 10 * x1 + 4 * x2 + 5 * x3 <= 600.
    MPConstraint c1 = solver.makeConstraint(-infinity, 600.0);
    c1.setCoefficient(x1, 10);
    c1.setCoefficient(x2, 4);
    c1.setCoefficient(x3, 5);

    // 2 * x1 + 2 * x2 + 6 * x3 <= 300.
    MPConstraint c2 = solver.makeConstraint(-infinity, 300.0);
    c2.setCoefficient(x1, 2);
    c2.setCoefficient(x2, 2);
    c2.setCoefficient(x3, 6);

    System.out.println("Number of variables = " + solver.numVariables());
    System.out.println("Number of constraints = " + solver.numConstraints());

    if (printModel) {
      String model = solver.exportModelAsLpFormat();
      System.out.println(model);
    }

    final MPSolver.ResultStatus resultStatus = solver.solve();

    // Check that the problem has an optimal solution.
    if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
      System.err.println("The problem does not have an optimal solution!");
      return;
    }

    // Verify that the solution satisfies all constraints (when using solvers
    // others than GLOP_LINEAR_PROGRAMMING, this is highly recommended!).
    if (!solver.verifySolution(/*tolerance=*/1e-7, /* log_errors= */ true)) {
      System.err.println("The solution returned by the solver violated the"
          + " problem constraints by at least 1e-7");
      return;
    }

    System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");

    // The objective value of the solution.
    System.out.println("Optimal objective value = " + solver.objective().value());

    // The value of each variable in the solution.
    System.out.println("x1 = " + x1.solutionValue());
    System.out.println("x2 = " + x2.solutionValue());
    System.out.println("x3 = " + x3.solutionValue());

    final double[] activities = solver.computeConstraintActivities();

    System.out.println("Advanced usage:");
    System.out.println("Problem solved in " + solver.iterations() + " iterations");
    System.out.println("x1: reduced cost = " + x1.reducedCost());
    System.out.println("x2: reduced cost = " + x2.reducedCost());
    System.out.println("x3: reduced cost = " + x3.reducedCost());
    System.out.println("c0: dual value = " + c0.dualValue());
    System.out.println("    activity = " + activities[c0.index()]);
    System.out.println("c1: dual value = " + c1.dualValue());
    System.out.println("    activity = " + activities[c1.index()]);
    System.out.println("c2: dual value = " + c2.dualValue());
    System.out.println("    activity = " + activities[c2.index()]);
  }

  public static void main(String[] args) throws Exception {
    System.out.println("---- Linear programming example with GLOP (recommended) ----");
    runLinearProgrammingExample("GLOP_LINEAR_PROGRAMMING", true);
    System.out.println("---- Linear programming example with CLP ----");
    runLinearProgrammingExample("CLP_LINEAR_PROGRAMMING", false);
    System.out.println("---- Linear programming example with GLPK ----");
    runLinearProgrammingExample("GLPK_LINEAR_PROGRAMMING", false);
  }
}