md5.cc 7.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

#include <string.h>

#include "common/md5.h"

namespace google_breakpad {

#ifndef WORDS_BIGENDIAN
#define byteReverse(buf, len)   /* Nothing */
#else
/*
 * Note: this code is harmless on little-endian machines.
 */
static void byteReverse(unsigned char *buf, unsigned longs)
{
  u32 t;
  do {
    t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
      ((unsigned) buf[1] << 8 | buf[0]);
    *(u32 *) buf = t;
    buf += 4;
  } while (--longs);
}
#endif

static void MD5Transform(u32 buf[4], u32 const in[16]);

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
  ctx->buf[0] = 0x67452301;
  ctx->buf[1] = 0xefcdab89;
  ctx->buf[2] = 0x98badcfe;
  ctx->buf[3] = 0x10325476;

  ctx->bits[0] = 0;
  ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, size_t len)
{
  u32 t;

  /* Update bitcount */

  t = ctx->bits[0];
  if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
    ctx->bits[1]++;         /* Carry from low to high */
  ctx->bits[1] += len >> 29;

  t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */

  /* Handle any leading odd-sized chunks */

  if (t) {
    unsigned char *p = (unsigned char *) ctx->in + t;

    t = 64 - t;
    if (len < t) {
      memcpy(p, buf, len);
      return;
    }
    memcpy(p, buf, t);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, (u32 *) ctx->in);
    buf += t;
    len -= t;
  }
  /* Process data in 64-byte chunks */

  while (len >= 64) {
    memcpy(ctx->in, buf, 64);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, (u32 *) ctx->in);
    buf += 64;
    len -= 64;
  }

  /* Handle any remaining bytes of data. */

  memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
  unsigned count;
  unsigned char *p;

  /* Compute number of bytes mod 64 */
  count = (ctx->bits[0] >> 3) & 0x3F;

  /* Set the first char of padding to 0x80.  This is safe since there is
     always at least one byte free */
  p = ctx->in + count;
  *p++ = 0x80;

  /* Bytes of padding needed to make 64 bytes */
  count = 64 - 1 - count;

  /* Pad out to 56 mod 64 */
  if (count < 8) {
    /* Two lots of padding:  Pad the first block to 64 bytes */
    memset(p, 0, count);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, (u32 *) ctx->in);

    /* Now fill the next block with 56 bytes */
    memset(ctx->in, 0, 56);
  } else {
    /* Pad block to 56 bytes */
    memset(p, 0, count - 8);
  }
  byteReverse(ctx->in, 14);

  /* Append length in bits and transform */
  memcpy(&ctx->in[14], &ctx->bits[0], sizeof(u32));
  memcpy(&ctx->in[15], &ctx->bits[1], sizeof(u32));

  MD5Transform(ctx->buf, (u32 *) ctx->in);
  byteReverse((unsigned char *) ctx->buf, 4);
  memcpy(digest, ctx->buf, 16);
  memset(ctx, 0, sizeof(*ctx));        /* In case it's sensitive */
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
  ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(u32 buf[4], u32 const in[16])
{
  u32 a, b, c, d;

  a = buf[0];
  b = buf[1];
  c = buf[2];
  d = buf[3];

  MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

  MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

  MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

  MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

  buf[0] += a;
  buf[1] += b;
  buf[2] += c;
  buf[3] += d;
}

}  // namespace google_breakpad