SparseView.h 7.92 KB
Newer Older
LM's avatar
LM committed
1 2 3
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
4
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
LM's avatar
LM committed
5 6
// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_SPARSEVIEW_H
#define EIGEN_SPARSEVIEW_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20
namespace internal {

template<typename MatrixType>
struct traits<SparseView<MatrixType> > : traits<MatrixType>
{
21
  typedef typename MatrixType::StorageIndex StorageIndex;
LM's avatar
LM committed
22 23 24 25 26 27 28 29
  typedef Sparse StorageKind;
  enum {
    Flags = int(traits<MatrixType>::Flags) & (RowMajorBit)
  };
};

} // end namespace internal

30 31 32 33 34 35 36 37 38 39 40 41 42 43
/** \ingroup SparseCore_Module
  * \class SparseView
  *
  * \brief Expression of a dense or sparse matrix with zero or too small values removed
  *
  * \tparam MatrixType the type of the object of which we are removing the small entries
  *
  * This class represents an expression of a given dense or sparse matrix with
  * entries smaller than \c reference * \c epsilon are removed.
  * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned()
  * and most of the time this is the only way it is used.
  *
  * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned()
  */
LM's avatar
LM committed
44 45 46 47 48
template<typename MatrixType>
class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
{
  typedef typename MatrixType::Nested MatrixTypeNested;
  typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
49
  typedef SparseMatrixBase<SparseView > Base;
LM's avatar
LM committed
50 51
public:
  EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
52
  typedef typename internal::remove_all<MatrixType>::type NestedExpression;
LM's avatar
LM committed
53

54 55 56
  explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0),
                      const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision())
    : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {}
LM's avatar
LM committed
57 58 59 60 61 62

  inline Index rows() const { return m_matrix.rows(); }
  inline Index cols() const { return m_matrix.cols(); }

  inline Index innerSize() const { return m_matrix.innerSize(); }
  inline Index outerSize() const { return m_matrix.outerSize(); }
63 64 65 66 67 68 69 70
  
  /** \returns the nested expression */
  const typename internal::remove_all<MatrixTypeNested>::type&
  nestedExpression() const { return m_matrix; }
  
  Scalar reference() const { return m_reference; }
  RealScalar epsilon() const { return m_epsilon; }
  
LM's avatar
LM committed
71
protected:
Don Gagne's avatar
Don Gagne committed
72
  MatrixTypeNested m_matrix;
LM's avatar
LM committed
73
  Scalar m_reference;
74
  RealScalar m_epsilon;
LM's avatar
LM committed
75 76
};

77
namespace internal {
LM's avatar
LM committed
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// TODO find a way to unify the two following variants
// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is
// not easy because the evaluators do not expose the sizes of the underlying expression.
  
template<typename ArgType>
struct unary_evaluator<SparseView<ArgType>, IteratorBased>
  : public evaluator_base<SparseView<ArgType> >
{
    typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
  public:
    typedef SparseView<ArgType> XprType;
    
    class InnerIterator : public EvalIterator
    {
        typedef typename XprType::Scalar Scalar;
      public:

        EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
          : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view)
        {
          incrementToNonZero();
        }

        EIGEN_STRONG_INLINE InnerIterator& operator++()
        {
          EvalIterator::operator++();
          incrementToNonZero();
          return *this;
        }

        using EvalIterator::value;

      protected:
        const XprType &m_view;

      private:
        void incrementToNonZero()
        {
          while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon()))
          {
            EvalIterator::operator++();
          }
        }
    };
    
    enum {
      CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
      Flags = XprType::Flags
    };
    
    explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}

  protected:
    evaluator<ArgType> m_argImpl;
    const XprType &m_view;
};
LM's avatar
LM committed
135

136 137 138 139 140 141 142 143 144 145 146 147 148
template<typename ArgType>
struct unary_evaluator<SparseView<ArgType>, IndexBased>
  : public evaluator_base<SparseView<ArgType> >
{
  public:
    typedef SparseView<ArgType> XprType;
  protected:
    enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
    typedef typename XprType::Scalar Scalar;
    typedef typename XprType::StorageIndex StorageIndex;
  public:
    
    class InnerIterator
Don Gagne's avatar
Don Gagne committed
149
    {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      public:

        EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
          : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize())
        {
          incrementToNonZero();
        }

        EIGEN_STRONG_INLINE InnerIterator& operator++()
        {
          m_inner++;
          incrementToNonZero();
          return *this;
        }

        EIGEN_STRONG_INLINE Scalar value() const
        {
          return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner)
                              : m_sve.m_argImpl.coeff(m_inner, m_outer);
        }

        EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; }
        inline Index row() const { return IsRowMajor ? m_outer : index(); }
        inline Index col() const { return IsRowMajor ? index() : m_outer; }

        EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }

      protected:
        const unary_evaluator &m_sve;
        Index m_inner;
        const Index m_outer;
        const Index m_end;

      private:
        void incrementToNonZero()
        {
          while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon()))
          {
            m_inner++;
          }
        }
    };
    
    enum {
      CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
      Flags = XprType::Flags
    };
    
    explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}

  protected:
    evaluator<ArgType> m_argImpl;
    const XprType &m_view;
LM's avatar
LM committed
203 204
};

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
} // end namespace internal

/** \ingroup SparseCore_Module
  *
  * \returns a sparse expression of the dense expression \c *this with values smaller than
  * \a reference * \a epsilon removed.
  *
  * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S:
  * \code
  * MatrixXd D(n,m);
  * SparseMatrix<double> S;
  * S = D.sparseView();             // suppress numerical zeros (exact)
  * S = D.sparseView(reference);
  * S = D.sparseView(reference,epsilon);
  * \endcode
  * where \a reference is a meaningful non zero reference value,
  * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision().
  *
  * \sa SparseMatrixBase::pruned(), class SparseView */
template<typename Derived>
const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference,
                                                          const typename NumTraits<Scalar>::Real& epsilon) const
{
  return SparseView<Derived>(derived(), reference, epsilon);
}

/** \returns an expression of \c *this with values smaller than
  * \a reference * \a epsilon removed.
  *
  * This method is typically used in conjunction with the product of two sparse matrices
  * to automatically prune the smallest values as follows:
  * \code
  * C = (A*B).pruned();             // suppress numerical zeros (exact)
  * C = (A*B).pruned(ref);
  * C = (A*B).pruned(ref,epsilon);
  * \endcode
  * where \c ref is a meaningful non zero reference value.
  * */
LM's avatar
LM committed
243
template<typename Derived>
244 245 246
const SparseView<Derived>
SparseMatrixBase<Derived>::pruned(const Scalar& reference,
                                  const RealScalar& epsilon) const
LM's avatar
LM committed
247
{
248
  return SparseView<Derived>(derived(), reference, epsilon);
LM's avatar
LM committed
249 250
}

Don Gagne's avatar
Don Gagne committed
251 252
} // end namespace Eigen

LM's avatar
LM committed
253
#endif