SparseDot.h 3.01 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_SPARSE_DOT_H
#define EIGEN_SPARSE_DOT_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen { 

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  eigen_assert(size() == other.size());
  eigen_assert(other.size()>0 && "you are using a non initialized vector");

29 30
  internal::evaluator<Derived> thisEval(derived());
  typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
Don Gagne's avatar
Don Gagne committed
31
  Scalar res(0);
LM's avatar
LM committed
32 33
  while (i)
  {
Don Gagne's avatar
Don Gagne committed
34
    res += numext::conj(i.value()) * other.coeff(i.index());
LM's avatar
LM committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    ++i;
  }
  return res;
}

template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  eigen_assert(size() == other.size());

53 54 55 56 57
  internal::evaluator<Derived> thisEval(derived());
  typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
  
  internal::evaluator<OtherDerived>  otherEval(other.derived());
  typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
Don Gagne's avatar
Don Gagne committed
58 59

  Scalar res(0);
LM's avatar
LM committed
60 61 62 63
  while (i && j)
  {
    if (i.index()==j.index())
    {
Don Gagne's avatar
Don Gagne committed
64
      res += numext::conj(i.value()) * j.value();
LM's avatar
LM committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78
      ++i; ++j;
    }
    else if (i.index()<j.index())
      ++i;
    else
      ++j;
  }
  return res;
}

template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::squaredNorm() const
{
Don Gagne's avatar
Don Gagne committed
79
  return numext::real((*this).cwiseAbs2().sum());
LM's avatar
LM committed
80 81 82 83 84 85
}

template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::norm() const
{
Don Gagne's avatar
Don Gagne committed
86 87 88 89 90 91 92 93 94
  using std::sqrt;
  return sqrt(squaredNorm());
}

template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::blueNorm() const
{
  return internal::blueNorm_impl(*this);
LM's avatar
LM committed
95
}
Don Gagne's avatar
Don Gagne committed
96
} // end namespace Eigen
LM's avatar
LM committed
97 98

#endif // EIGEN_SPARSE_DOT_H