DenseCoeffsBase.h 23.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
Don Gagne's avatar
Don Gagne committed
6 7 8
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
9 10 11 12

#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H

Don Gagne's avatar
Don Gagne committed
13 14
namespace Eigen {

LM's avatar
LM committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
  typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}

/** \brief Base class providing read-only coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #ReadOnlyAccessors Constant indicating read-only access
  *
  * This class defines the \c operator() \c const function and friends, which can be used to read specific
  * entries of a matrix or array.
  * 
  * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
  *     \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
  public:
    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;

    // Explanation for this CoeffReturnType typedef.
    // - This is the return type of the coeff() method.
    // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
    // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
    // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
    // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
    // not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
    typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
                         const Scalar&,
                         typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
                     >::type CoeffReturnType;

    typedef typename internal::add_const_on_value_type_if_arithmetic<
                         typename internal::packet_traits<Scalar>::type
                     >::type PacketReturnType;

    typedef EigenBase<Derived> Base;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

63
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
64 65 66 67 68 69 70 71
    EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
    {
      return int(Derived::RowsAtCompileTime) == 1 ? 0
          : int(Derived::ColsAtCompileTime) == 1 ? inner
          : int(Derived::Flags)&RowMajorBit ? outer
          : inner;
    }

72
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
    {
      return int(Derived::ColsAtCompileTime) == 1 ? 0
          : int(Derived::RowsAtCompileTime) == 1 ? inner
          : int(Derived::Flags)&RowMajorBit ? inner
          : outer;
    }

    /** Short version: don't use this function, use
      * \link operator()(Index,Index) const \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator()(Index,Index) const \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator()(Index,Index) const \endlink.
      *
      * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
      */
95
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
96 97 98
    EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
    {
      eigen_internal_assert(row >= 0 && row < rows()
99 100
                         && col >= 0 && col < cols());
      return internal::evaluator<Derived>(derived()).coeff(row,col);
LM's avatar
LM committed
101 102
    }

103
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
104 105 106 107 108 109 110 111 112 113
    EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
    {
      return coeff(rowIndexByOuterInner(outer, inner),
                   colIndexByOuterInner(outer, inner));
    }

    /** \returns the coefficient at given the given row and column.
      *
      * \sa operator()(Index,Index), operator[](Index)
      */
114
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
115 116 117 118
    EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
    {
      eigen_assert(row >= 0 && row < rows()
          && col >= 0 && col < cols());
119
      return coeff(row, col);
LM's avatar
LM committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    }

    /** Short version: don't use this function, use
      * \link operator[](Index) const \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator[](Index) const \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameter \a index is in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator[](Index) const \endlink.
      *
      * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
      */

137
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
138 139 140
    EIGEN_STRONG_INLINE CoeffReturnType
    coeff(Index index) const
    {
141 142
      EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
                          THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
LM's avatar
LM committed
143
      eigen_internal_assert(index >= 0 && index < size());
144
      return internal::evaluator<Derived>(derived()).coeff(index);
LM's avatar
LM committed
145 146 147 148 149 150 151 152 153 154 155
    }


    /** \returns the coefficient at given index.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
      * z() const, w() const
      */

156
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
157 158 159 160 161 162
    EIGEN_STRONG_INLINE CoeffReturnType
    operator[](Index index) const
    {
      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
      eigen_assert(index >= 0 && index < size());
163
      return coeff(index);
LM's avatar
LM committed
164 165 166 167 168 169 170 171 172 173 174 175
    }

    /** \returns the coefficient at given index.
      *
      * This is synonymous to operator[](Index) const.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
      * z() const, w() const
      */

176
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
177 178 179 180
    EIGEN_STRONG_INLINE CoeffReturnType
    operator()(Index index) const
    {
      eigen_assert(index >= 0 && index < size());
181
      return coeff(index);
LM's avatar
LM committed
182 183 184 185
    }

    /** equivalent to operator[](0).  */

186
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
187 188 189 190 191
    EIGEN_STRONG_INLINE CoeffReturnType
    x() const { return (*this)[0]; }

    /** equivalent to operator[](1).  */

192
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
193
    EIGEN_STRONG_INLINE CoeffReturnType
194 195 196 197 198
    y() const
    {
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
      return (*this)[1];
    }
LM's avatar
LM committed
199 200 201

    /** equivalent to operator[](2).  */

202
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
203
    EIGEN_STRONG_INLINE CoeffReturnType
204 205 206 207 208
    z() const
    {
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
      return (*this)[2];
    }
LM's avatar
LM committed
209 210 211

    /** equivalent to operator[](3).  */

212
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
213
    EIGEN_STRONG_INLINE CoeffReturnType
214 215 216 217 218
    w() const
    {
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
      return (*this)[3];
    }
LM's avatar
LM committed
219 220 221 222 223 224 225 226 227 228 229 230 231 232

    /** \internal
      * \returns the packet of coefficients starting at the given row and column. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit.
      *
      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */

    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
    {
233 234 235
      typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
      eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
      return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(row,col);
LM's avatar
LM committed
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    }


    /** \internal */
    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
    {
      return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
                              colIndexByOuterInner(outer, inner));
    }

    /** \internal
      * \returns the packet of coefficients starting at the given index. It is your responsibility
      * to ensure that a packet really starts there. This method is only available on expressions having the
      * PacketAccessBit and the LinearAccessBit.
      *
      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
      * starting at an address which is a multiple of the packet size.
      */

    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
    {
260 261 262
      EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
                          THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
      typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
LM's avatar
LM committed
263
      eigen_internal_assert(index >= 0 && index < size());
264
      return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(index);
LM's avatar
LM committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    }

  protected:
    // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
    // But some methods are only available in the DirectAccess case.
    // So we add dummy methods here with these names, so that "using... " doesn't fail.
    // It's not private so that the child class DenseBase can access them, and it's not public
    // either since it's an implementation detail, so has to be protected.
    void coeffRef();
    void coeffRefByOuterInner();
    void writePacket();
    void writePacketByOuterInner();
    void copyCoeff();
    void copyCoeffByOuterInner();
    void copyPacket();
    void copyPacketByOuterInner();
    void stride();
    void innerStride();
    void outerStride();
    void rowStride();
    void colStride();
};

/** \brief Base class providing read/write coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #WriteAccessors Constant indicating read/write access
  *
  * This class defines the non-const \c operator() function and friends, which can be used to write specific
  * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
  * defines the const variant for reading specific entries.
  * 
  * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
  */
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;

    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::coeff;
    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;
    using Base::rowIndexByOuterInner;
    using Base::colIndexByOuterInner;
    using Base::operator[];
    using Base::operator();
    using Base::x;
    using Base::y;
    using Base::z;
    using Base::w;

    /** Short version: don't use this function, use
      * \link operator()(Index,Index) \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator()(Index,Index) \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator()(Index,Index) \endlink.
      *
      * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
      */
339
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
340 341 342
    EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
    {
      eigen_internal_assert(row >= 0 && row < rows()
343 344
                         && col >= 0 && col < cols());
      return internal::evaluator<Derived>(derived()).coeffRef(row,col);
LM's avatar
LM committed
345 346
    }

347
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
348 349 350 351 352 353 354 355 356 357 358 359
    EIGEN_STRONG_INLINE Scalar&
    coeffRefByOuterInner(Index outer, Index inner)
    {
      return coeffRef(rowIndexByOuterInner(outer, inner),
                      colIndexByOuterInner(outer, inner));
    }

    /** \returns a reference to the coefficient at given the given row and column.
      *
      * \sa operator[](Index)
      */

360
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
361 362 363 364 365
    EIGEN_STRONG_INLINE Scalar&
    operator()(Index row, Index col)
    {
      eigen_assert(row >= 0 && row < rows()
          && col >= 0 && col < cols());
366
      return coeffRef(row, col);
LM's avatar
LM committed
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    }


    /** Short version: don't use this function, use
      * \link operator[](Index) \endlink instead.
      *
      * Long version: this function is similar to
      * \link operator[](Index) \endlink, but without the assertion.
      * Use this for limiting the performance cost of debugging code when doing
      * repeated coefficient access. Only use this when it is guaranteed that the
      * parameters \a row and \a col are in range.
      *
      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
      * function equivalent to \link operator[](Index) \endlink.
      *
      * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
      */

385
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
386 387 388
    EIGEN_STRONG_INLINE Scalar&
    coeffRef(Index index)
    {
389 390
      EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
                          THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
LM's avatar
LM committed
391
      eigen_internal_assert(index >= 0 && index < size());
392
      return internal::evaluator<Derived>(derived()).coeffRef(index);
LM's avatar
LM committed
393 394 395 396 397 398 399 400 401
    }

    /** \returns a reference to the coefficient at given index.
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
      */

402
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
403 404 405 406 407 408
    EIGEN_STRONG_INLINE Scalar&
    operator[](Index index)
    {
      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
      eigen_assert(index >= 0 && index < size());
409
      return coeffRef(index);
LM's avatar
LM committed
410 411 412 413 414 415 416 417 418 419 420
    }

    /** \returns a reference to the coefficient at given index.
      *
      * This is synonymous to operator[](Index).
      *
      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
      *
      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
      */

421
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
422 423 424 425
    EIGEN_STRONG_INLINE Scalar&
    operator()(Index index)
    {
      eigen_assert(index >= 0 && index < size());
426
      return coeffRef(index);
LM's avatar
LM committed
427 428 429 430
    }

    /** equivalent to operator[](0).  */

431
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
432 433 434 435 436
    EIGEN_STRONG_INLINE Scalar&
    x() { return (*this)[0]; }

    /** equivalent to operator[](1).  */

437
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
438
    EIGEN_STRONG_INLINE Scalar&
439
    y()
LM's avatar
LM committed
440
    {
441 442
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
      return (*this)[1];
LM's avatar
LM committed
443 444
    }

445
    /** equivalent to operator[](2).  */
LM's avatar
LM committed
446

447 448 449
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar&
    z()
LM's avatar
LM committed
450
    {
451 452
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
      return (*this)[2];
LM's avatar
LM committed
453 454
    }

455
    /** equivalent to operator[](3).  */
LM's avatar
LM committed
456

457 458 459
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar&
    w()
LM's avatar
LM committed
460
    {
461 462
      EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
      return (*this)[3];
LM's avatar
LM committed
463 464 465 466 467 468 469 470 471 472 473 474
    }
};

/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #DirectAccessors Constant indicating direct access
  *
  * This class defines functions to work with strides which can be used to access entries directly. This class
  * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
  * \c operator() .
  *
475
  * \sa \blank \ref TopicClassHierarchy
LM's avatar
LM committed
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  */
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
      *
      * \sa outerStride(), rowStride(), colStride()
      */
495
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
496 497 498 499 500 501 502 503 504 505
    inline Index innerStride() const
    {
      return derived().innerStride();
    }

    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
      *          in a column-major matrix).
      *
      * \sa innerStride(), rowStride(), colStride()
      */
506
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    inline Index outerStride() const
    {
      return derived().outerStride();
    }

    // FIXME shall we remove it ?
    inline Index stride() const
    {
      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
    }

    /** \returns the pointer increment between two consecutive rows.
      *
      * \sa innerStride(), outerStride(), colStride()
      */
522
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
523 524 525 526 527 528 529 530 531
    inline Index rowStride() const
    {
      return Derived::IsRowMajor ? outerStride() : innerStride();
    }

    /** \returns the pointer increment between two consecutive columns.
      *
      * \sa innerStride(), outerStride(), rowStride()
      */
532
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    inline Index colStride() const
    {
      return Derived::IsRowMajor ? innerStride() : outerStride();
    }
};

/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
  * \ingroup Core_Module
  * \tparam Derived Type of the derived class
  * \tparam #DirectWriteAccessors Constant indicating direct access
  *
  * This class defines functions to work with strides which can be used to access entries directly. This class
  * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
  * \c operator().
  *
548
  * \sa \blank \ref TopicClassHierarchy
LM's avatar
LM committed
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  */
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
  : public DenseCoeffsBase<Derived, WriteAccessors>
{
  public:

    typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    using Base::rows;
    using Base::cols;
    using Base::size;
    using Base::derived;

    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
      *
      * \sa outerStride(), rowStride(), colStride()
      */
569
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
570 571 572 573 574 575 576 577 578 579
    inline Index innerStride() const
    {
      return derived().innerStride();
    }

    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
      *          in a column-major matrix).
      *
      * \sa innerStride(), rowStride(), colStride()
      */
580
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    inline Index outerStride() const
    {
      return derived().outerStride();
    }

    // FIXME shall we remove it ?
    inline Index stride() const
    {
      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
    }

    /** \returns the pointer increment between two consecutive rows.
      *
      * \sa innerStride(), outerStride(), colStride()
      */
596
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
597 598 599 600 601 602 603 604 605
    inline Index rowStride() const
    {
      return Derived::IsRowMajor ? outerStride() : innerStride();
    }

    /** \returns the pointer increment between two consecutive columns.
      *
      * \sa innerStride(), outerStride(), rowStride()
      */
606
    EIGEN_DEVICE_FUNC
LM's avatar
LM committed
607 608 609 610 611 612 613 614
    inline Index colStride() const
    {
      return Derived::IsRowMajor ? innerStride() : outerStride();
    }
};

namespace internal {

615
template<int Alignment, typename Derived, bool JustReturnZero>
LM's avatar
LM committed
616 617
struct first_aligned_impl
{
618
  static inline Index run(const Derived&)
LM's avatar
LM committed
619 620 621
  { return 0; }
};

622 623
template<int Alignment, typename Derived>
struct first_aligned_impl<Alignment, Derived, false>
LM's avatar
LM committed
624
{
625
  static inline Index run(const Derived& m)
LM's avatar
LM committed
626
  {
627
    return internal::first_aligned<Alignment>(m.data(), m.size());
LM's avatar
LM committed
628 629 630
  }
};

631 632 633
/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization.
  *
  * \tparam Alignment requested alignment in Bytes.
LM's avatar
LM committed
634 635 636 637
  *
  * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
  * documentation.
  */
638 639 640 641 642 643 644
template<int Alignment, typename Derived>
static inline Index first_aligned(const DenseBase<Derived>& m)
{
  enum { ReturnZero = (int(evaluator<Derived>::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) };
  return first_aligned_impl<Alignment, Derived, ReturnZero>::run(m.derived());
}

LM's avatar
LM committed
645
template<typename Derived>
646
static inline Index first_default_aligned(const DenseBase<Derived>& m)
LM's avatar
LM committed
647
{
648 649 650
  typedef typename Derived::Scalar Scalar;
  typedef typename packet_traits<Scalar>::type DefaultPacketType;
  return internal::first_aligned<int(unpacket_traits<DefaultPacketType>::alignment),Derived>(m);
LM's avatar
LM committed
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
}

template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
  enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};

template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
  enum { ret = 0 };
};

template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
  enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};

template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
  enum { ret = 0 };
};

} // end namespace internal

Don Gagne's avatar
Don Gagne committed
679 680
} // end namespace Eigen

LM's avatar
LM committed
681
#endif // EIGEN_DENSECOEFFSBASE_H