PartialPivLU.h 17.6 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
Don Gagne's avatar
Don Gagne committed
7 8 9
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
LM's avatar
LM committed
10 11 12 13

#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H

Don Gagne's avatar
Don Gagne committed
14 15
namespace Eigen { 

LM's avatar
LM committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/** \ingroup LU_Module
  *
  * \class PartialPivLU
  *
  * \brief LU decomposition of a matrix with partial pivoting, and related features
  *
  * \param MatrixType the type of the matrix of which we are computing the LU decomposition
  *
  * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
  * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
  * is a permutation matrix.
  *
  * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
  * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
  * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
  * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
  *
  * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
  * by class FullPivLU.
  *
  * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
  * such as rank computation. If you need these features, use class FullPivLU.
  *
  * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
  * in the general case.
  * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
  *
  * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
  *
  * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
  */
template<typename _MatrixType> class PartialPivLU
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
    typedef typename MatrixType::Index Index;
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;


    /**
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via PartialPivLU::compute(const MatrixType&).
    */
    PartialPivLU();

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa PartialPivLU()
      */
    PartialPivLU(Index size);

    /** Constructor.
      *
      * \param matrix the matrix of which to compute the LU decomposition.
      *
      * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
      * If you need to deal with non-full rank, use class FullPivLU instead.
      */
    PartialPivLU(const MatrixType& matrix);

    PartialPivLU& compute(const MatrixType& matrix);

    /** \returns the LU decomposition matrix: the upper-triangular part is U, the
      * unit-lower-triangular part is L (at least for square matrices; in the non-square
      * case, special care is needed, see the documentation of class FullPivLU).
      *
      * \sa matrixL(), matrixU()
      */
    inline const MatrixType& matrixLU() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return m_lu;
    }

    /** \returns the permutation matrix P.
      */
    inline const PermutationType& permutationP() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return m_p;
    }

    /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
      * *this is the LU decomposition.
      *
      * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
      *          the only requirement in order for the equation to make sense is that
      *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
      *
      * \returns the solution.
      *
      * Example: \include PartialPivLU_solve.cpp
      * Output: \verbinclude PartialPivLU_solve.out
      *
      * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
      * theoretically exists and is unique regardless of b.
      *
      * \sa TriangularView::solve(), inverse(), computeInverse()
      */
    template<typename Rhs>
    inline const internal::solve_retval<PartialPivLU, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
    }

    /** \returns the inverse of the matrix of which *this is the LU decomposition.
      *
      * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
      *          invertibility, use class FullPivLU instead.
      *
      * \sa MatrixBase::inverse(), LU::inverse()
      */
    inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
    {
      eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
      return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
               (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
    }

    /** \returns the determinant of the matrix of which
      * *this is the LU decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the LU decomposition has already been computed.
      *
      * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
      *       optimized paths.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      *
      * \sa MatrixBase::determinant()
      */
    typename internal::traits<MatrixType>::Scalar determinant() const;

    MatrixType reconstructedMatrix() const;

    inline Index rows() const { return m_lu.rows(); }
    inline Index cols() const { return m_lu.cols(); }

  protected:
    MatrixType m_lu;
    PermutationType m_p;
    TranspositionType m_rowsTranspositions;
    Index m_det_p;
    bool m_isInitialized;
};

template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
  : m_lu(),
    m_p(),
    m_rowsTranspositions(),
    m_det_p(0),
    m_isInitialized(false)
{
}

template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
  : m_lu(size, size),
    m_p(size),
    m_rowsTranspositions(size),
    m_det_p(0),
    m_isInitialized(false)
{
}

template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
  : m_lu(matrix.rows(), matrix.rows()),
    m_p(matrix.rows()),
    m_rowsTranspositions(matrix.rows()),
    m_det_p(0),
    m_isInitialized(false)
{
  compute(matrix);
}

namespace internal {

/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex>
struct partial_lu_impl
{
  // FIXME add a stride to Map, so that the following mapping becomes easier,
  // another option would be to create an expression being able to automatically
  // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
  // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
  // and Block.
  typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
  typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
  typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::Index Index;

  /** \internal performs the LU decomposition in-place of the matrix \a lu
    * using an unblocked algorithm.
    *
    * In addition, this function returns the row transpositions in the
    * vector \a row_transpositions which must have a size equal to the number
    * of columns of the matrix \a lu, and an integer \a nb_transpositions
    * which returns the actual number of transpositions.
    *
    * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
    */
  static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
  {
    const Index rows = lu.rows();
    const Index cols = lu.cols();
Don Gagne's avatar
Don Gagne committed
243
    const Index size = (std::min)(rows,cols);
LM's avatar
LM committed
244
    nb_transpositions = 0;
Don Gagne's avatar
Don Gagne committed
245
    Index first_zero_pivot = -1;
LM's avatar
LM committed
246 247 248 249 250 251 252 253 254 255
    for(Index k = 0; k < size; ++k)
    {
      Index rrows = rows-k-1;
      Index rcols = cols-k-1;
        
      Index row_of_biggest_in_col;
      RealScalar biggest_in_corner
        = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
      row_of_biggest_in_col += k;

Don Gagne's avatar
Don Gagne committed
256
      row_transpositions[k] = PivIndex(row_of_biggest_in_col);
LM's avatar
LM committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

      if(biggest_in_corner != RealScalar(0))
      {
        if(k != row_of_biggest_in_col)
        {
          lu.row(k).swap(lu.row(row_of_biggest_in_col));
          ++nb_transpositions;
        }

        // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
        // overflow but not the actual quotient?
        lu.col(k).tail(rrows) /= lu.coeff(k,k);
      }
      else if(first_zero_pivot==-1)
      {
        // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
        // and continue the factorization such we still have A = PLU
        first_zero_pivot = k;
      }

      if(k<rows-1)
        lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
    }
    return first_zero_pivot;
  }

  /** \internal performs the LU decomposition in-place of the matrix represented
    * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
    * recursive, blocked algorithm.
    *
    * In addition, this function returns the row transpositions in the
    * vector \a row_transpositions which must have a size equal to the number
    * of columns of the matrix \a lu, and an integer \a nb_transpositions
    * which returns the actual number of transpositions.
    *
    * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
    *
    * \note This very low level interface using pointers, etc. is to:
    *   1 - reduce the number of instanciations to the strict minimum
    *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
    */
  static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
  {
    MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
    MatrixType lu(lu1,0,0,rows,cols);

Don Gagne's avatar
Don Gagne committed
303
    const Index size = (std::min)(rows,cols);
LM's avatar
LM committed
304 305 306 307 308 309 310 311 312 313 314 315 316

    // if the matrix is too small, no blocking:
    if(size<=16)
    {
      return unblocked_lu(lu, row_transpositions, nb_transpositions);
    }

    // automatically adjust the number of subdivisions to the size
    // of the matrix so that there is enough sub blocks:
    Index blockSize;
    {
      blockSize = size/8;
      blockSize = (blockSize/16)*16;
Don Gagne's avatar
Don Gagne committed
317
      blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
LM's avatar
LM committed
318 319 320
    }

    nb_transpositions = 0;
Don Gagne's avatar
Don Gagne committed
321
    Index first_zero_pivot = -1;
LM's avatar
LM committed
322 323
    for(Index k = 0; k < size; k+=blockSize)
    {
Don Gagne's avatar
Don Gagne committed
324
      Index bs = (std::min)(size-k,blockSize); // actual size of the block
LM's avatar
LM committed
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
      Index trows = rows - k - bs; // trailing rows
      Index tsize = size - k - bs; // trailing size

      // partition the matrix:
      //                          A00 | A01 | A02
      // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12
      //                          A20 | A21 | A22
      BlockType A_0(lu,0,0,rows,k);
      BlockType A_2(lu,0,k+bs,rows,tsize);
      BlockType A11(lu,k,k,bs,bs);
      BlockType A12(lu,k,k+bs,bs,tsize);
      BlockType A21(lu,k+bs,k,trows,bs);
      BlockType A22(lu,k+bs,k+bs,trows,tsize);

      PivIndex nb_transpositions_in_panel;
      // recursively call the blocked LU algorithm on [A11^T A21^T]^T
      // with a very small blocking size:
      Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
                   row_transpositions+k, nb_transpositions_in_panel, 16);
      if(ret>=0 && first_zero_pivot==-1)
        first_zero_pivot = k+ret;

      nb_transpositions += nb_transpositions_in_panel;
      // update permutations and apply them to A_0
      for(Index i=k; i<k+bs; ++i)
      {
        Index piv = (row_transpositions[i] += k);
        A_0.row(i).swap(A_0.row(piv));
      }

      if(trows)
      {
        // apply permutations to A_2
        for(Index i=k;i<k+bs; ++i)
          A_2.row(i).swap(A_2.row(row_transpositions[i]));

        // A12 = A11^-1 A12
        A11.template triangularView<UnitLower>().solveInPlace(A12);

        A22.noalias() -= A21 * A12;
      }
    }
    return first_zero_pivot;
  }
};

/** \internal performs the LU decomposition with partial pivoting in-place.
  */
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
{
  eigen_assert(lu.cols() == row_transpositions.size());
  eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);

  partial_lu_impl
    <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
    ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}

} // end namespace internal

template<typename MatrixType>
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
{
Don Gagne's avatar
Don Gagne committed
389 390 391
  // the row permutation is stored as int indices, so just to be sure:
  eigen_assert(matrix.rows()<NumTraits<int>::highest());
  
LM's avatar
LM committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  m_lu = matrix;

  eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
  const Index size = matrix.rows();

  m_rowsTranspositions.resize(size);

  typename TranspositionType::Index nb_transpositions;
  internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
  m_det_p = (nb_transpositions%2) ? -1 : 1;

  m_p = m_rowsTranspositions;

  m_isInitialized = true;
  return *this;
}

template<typename MatrixType>
typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
  eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
  return Scalar(m_det_p) * m_lu.diagonal().prod();
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: P^{-1} L U.
 * This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LU is not initialized.");
  // LU
  MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
                 * m_lu.template triangularView<Upper>();

  // P^{-1}(LU)
  res = m_p.inverse() * res;

  return res;
}

/***** Implementation of solve() *****************************************************/

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
  : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
{
  EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
    * So we proceed as follows:
    * Step 1: compute c = Pb.
    * Step 2: replace c by the solution x to Lx = c.
    * Step 3: replace c by the solution x to Ux = c.
    */

    eigen_assert(rhs().rows() == dec().matrixLU().rows());

    // Step 1
    dst = dec().permutationP() * rhs();

    // Step 2
    dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);

    // Step 3
    dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
  }
};

} // end namespace internal

/******** MatrixBase methods *******/

/** \lu_module
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
  return PartialPivLU<PlainObject>(eval());
}

#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
  *
  * Synonym of partialPivLu().
  *
  * \return the partial-pivoting LU decomposition of \c *this.
  *
  * \sa class PartialPivLU
  */
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
  return PartialPivLU<PlainObject>(eval());
}
#endif

Don Gagne's avatar
Don Gagne committed
499 500
} // end namespace Eigen

LM's avatar
LM committed
501
#endif // EIGEN_PARTIALLU_H