Skip to content
qwt_raster_data.cpp 11.5 KiB
Newer Older
pixhawk's avatar
pixhawk committed
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_raster_data.h"
Bryant's avatar
Bryant committed
#include "qwt_point_3d.h"
#include <qnumeric.h>
pixhawk's avatar
pixhawk committed

class QwtRasterData::ContourPlane
{
public:
Bryant's avatar
Bryant committed
    inline ContourPlane( double z ):
        d_z( z )
    {
pixhawk's avatar
pixhawk committed
    }

Bryant's avatar
Bryant committed
    inline bool intersect( const QwtPoint3D vertex[3],
        QPointF line[2], bool ignoreOnPlane ) const;
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
    inline double z() const { return d_z; }
pixhawk's avatar
pixhawk committed

private:
Bryant's avatar
Bryant committed
    inline int compare( double z ) const;
    inline QPointF intersection(
        const QwtPoint3D& p1, const QwtPoint3D &p2 ) const;
pixhawk's avatar
pixhawk committed

    double d_z;
};

inline bool QwtRasterData::ContourPlane::intersect(
Bryant's avatar
Bryant committed
    const QwtPoint3D vertex[3], QPointF line[2],
    bool ignoreOnPlane ) const
pixhawk's avatar
pixhawk committed
{
    bool found = true;

    // Are the vertices below (-1), on (0) or above (1) the plan ?
Bryant's avatar
Bryant committed
    const int eq1 = compare( vertex[0].z() );
    const int eq2 = compare( vertex[1].z() );
    const int eq3 = compare( vertex[2].z() );
pixhawk's avatar
pixhawk committed

    /*
        (a) All the vertices lie below the contour level.
        (b) Two vertices lie below and one on the contour level.
        (c) Two vertices lie below and one above the contour level.
        (d) One vertex lies below and two on the contour level.
        (e) One vertex lies below, one on and one above the contour level.
        (f) One vertex lies below and two above the contour level.
        (g) Three vertices lie on the contour level.
        (h) Two vertices lie on and one above the contour level.
        (i) One vertex lies on and two above the contour level.
        (j) All the vertices lie above the contour level.
     */

Bryant's avatar
Bryant committed
    static const int tab[3][3][3] =
    {
pixhawk's avatar
pixhawk committed
        // jump table to avoid nested case statements
        { { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
        { { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
        { { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
    };

    const int edgeType = tab[eq1+1][eq2+1][eq3+1];
Bryant's avatar
Bryant committed
    switch ( edgeType )
    {
        case 1:
            // d(0,0,-1), h(0,0,1)
            line[0] = vertex[0].toPoint();
            line[1] = vertex[1].toPoint();
            break;
        case 2:
            // d(-1,0,0), h(1,0,0)
            line[0] = vertex[1].toPoint();
            line[1] = vertex[2].toPoint();
            break;
        case 3:
            // d(0,-1,0), h(0,1,0)
            line[0] = vertex[2].toPoint();
            line[1] = vertex[0].toPoint();
            break;
        case 4:
            // e(0,-1,1), e(0,1,-1)
            line[0] = vertex[0].toPoint();
            line[1] = intersection( vertex[1], vertex[2] );
            break;
        case 5:
            // e(-1,0,1), e(1,0,-1)
            line[0] = vertex[1].toPoint();
            line[1] = intersection( vertex[2], vertex[0] );
            break;
        case 6:
            // e(-1,1,0), e(1,0,-1)
            line[0] = vertex[2].toPoint();
            line[1] = intersection( vertex[0], vertex[1] );
            break;
        case 7:
            // c(-1,1,-1), f(1,1,-1)
            line[0] = intersection( vertex[0], vertex[1] );
            line[1] = intersection( vertex[1], vertex[2] );
            break;
        case 8:
            // c(-1,-1,1), f(1,1,-1)
            line[0] = intersection( vertex[1], vertex[2] );
            line[1] = intersection( vertex[2], vertex[0] );
            break;
        case 9:
            // f(-1,1,1), c(1,-1,-1)
            line[0] = intersection( vertex[2], vertex[0] );
            line[1] = intersection( vertex[0], vertex[1] );
            break;
        case 10:
            // g(0,0,0)
            // The CONREC algorithm has no satisfying solution for
            // what to do, when all vertices are on the plane.

            if ( ignoreOnPlane )
                found = false;
            else
            {
                line[0] = vertex[2].toPoint();
                line[1] = vertex[0].toPoint();
            }
            break;
        default:
            found = false;
pixhawk's avatar
pixhawk committed
    }

    return found;
}

Bryant's avatar
Bryant committed
inline int QwtRasterData::ContourPlane::compare( double z ) const
pixhawk's avatar
pixhawk committed
{
Bryant's avatar
Bryant committed
    if ( z > d_z )
pixhawk's avatar
pixhawk committed
        return 1;

Bryant's avatar
Bryant committed
    if ( z < d_z )
pixhawk's avatar
pixhawk committed
        return -1;

    return 0;
}

Bryant's avatar
Bryant committed
inline QPointF QwtRasterData::ContourPlane::intersection(
    const QwtPoint3D& p1, const QwtPoint3D &p2 ) const
pixhawk's avatar
pixhawk committed
{
    const double h1 = p1.z() - d_z;
    const double h2 = p2.z() - d_z;

Bryant's avatar
Bryant committed
    const double x = ( h2 * p1.x() - h1 * p2.x() ) / ( h2 - h1 );
    const double y = ( h2 * p1.y() - h1 * p2.y() ) / ( h2 - h1 );
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
    return QPointF( x, y );
pixhawk's avatar
pixhawk committed
}

Bryant's avatar
Bryant committed
//! Constructor
pixhawk's avatar
pixhawk committed
QwtRasterData::QwtRasterData()
{
}

Bryant's avatar
Bryant committed
//! Destructor
pixhawk's avatar
pixhawk committed
QwtRasterData::~QwtRasterData()
{
}

Bryant's avatar
Bryant committed
/*!
   Set the bounding interval for the x, y or z coordinates.
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
   \param axis Axis
   \param interval Bounding interval

   \sa interval()
*/
void QwtRasterData::setInterval( Qt::Axis axis, const QwtInterval &interval )
pixhawk's avatar
pixhawk committed
{
Bryant's avatar
Bryant committed
    d_intervals[axis] = interval;
pixhawk's avatar
pixhawk committed
}

/*!
  \brief Initialize a raster

Bryant's avatar
Bryant committed
  Before the composition of an image QwtPlotSpectrogram calls initRaster(),
pixhawk's avatar
pixhawk committed
  announcing the area and its resolution that will be requested.
pixhawk's avatar
pixhawk committed
  The default implementation does nothing, but for data sets that
Bryant's avatar
Bryant committed
  are stored in files, it might be good idea to reimplement initRaster(),
pixhawk's avatar
pixhawk committed
  where the data is resampled and loaded into memory.
Bryant's avatar
Bryant committed
  \param area Area of the raster
pixhawk's avatar
pixhawk committed
  \param raster Number of horizontal and vertical pixels

  \sa initRaster(), value()
*/
Bryant's avatar
Bryant committed
void QwtRasterData::initRaster( const QRectF &area, const QSize &raster )
pixhawk's avatar
pixhawk committed
{
Bryant's avatar
Bryant committed
    Q_UNUSED( area );
    Q_UNUSED( raster );
pixhawk's avatar
pixhawk committed
}

/*!
  \brief Discard a raster

  After the composition of an image QwtPlotSpectrogram calls discardRaster().
pixhawk's avatar
pixhawk committed
  The default implementation does nothing, but if data has been loaded
  in initRaster(), it could deleted now.

  \sa initRaster(), value()
*/
void QwtRasterData::discardRaster()
{
}

/*!
Bryant's avatar
Bryant committed
   \brief Pixel hint
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
   pixelHint() returns the geometry of a pixel, that can be used 
   to calculate the resolution and alignment of the plot item, that is
   representing the data. 
   
   Width and height of the hint need to be the horizontal  
   and vertical distances between 2 neighbored points. 
   The center of the hint has to be the position of any point 
   ( it doesn't matter which one ).
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
   An empty hint indicates, that there are values for any detail level.
Bryant's avatar
Bryant committed
   Limiting the resolution of the image might significantly improve
   the performance and heavily reduce the amount of memory when rendering
   a QImage from the raster data. 
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
   The default implementation returns an empty rectangle recommending
   to render in target device ( f.e. screen ) resolution.
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
   \param area In most implementations the resolution of the data doesn't
               depend on the requested area.

   \return Bounding rectangle of a pixel 
pixhawk's avatar
pixhawk committed
*/
Bryant's avatar
Bryant committed
QRectF QwtRasterData::pixelHint( const QRectF &area ) const
pixhawk's avatar
pixhawk committed
{
Bryant's avatar
Bryant committed
    Q_UNUSED( area );
    return QRectF(); 
pixhawk's avatar
pixhawk committed
}

/*!
   Calculate contour lines
Bryant's avatar
Bryant committed
   \param rect Bounding rectangle for the contour lines
   \param raster Number of data pixels of the raster data
   \param levels List of limits, where to insert contour lines
   \param flags Flags to customize the contouring algorithm

   \return Calculated contour lines

pixhawk's avatar
pixhawk committed
   An adaption of CONREC, a simple contouring algorithm.
   http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
pixhawk's avatar
pixhawk committed
QwtRasterData::ContourLines QwtRasterData::contourLines(
Bryant's avatar
Bryant committed
    const QRectF &rect, const QSize &raster,
    const QList<double> &levels, ConrecFlags flags ) const
pixhawk's avatar
pixhawk committed
    ContourLines contourLines;
pixhawk's avatar
pixhawk committed
    if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
        return contourLines;

    const double dx = rect.width() / raster.width();
    const double dy = rect.height() / raster.height();

    const bool ignoreOnPlane =
        flags & QwtRasterData::IgnoreAllVerticesOnLevel;

Bryant's avatar
Bryant committed
    const QwtInterval range = interval( Qt::ZAxis );
pixhawk's avatar
pixhawk committed
    bool ignoreOutOfRange = false;
    if ( range.isValid() )
        ignoreOutOfRange = flags & IgnoreOutOfRange;

Bryant's avatar
Bryant committed
    QwtRasterData *that = const_cast<QwtRasterData *>( this );
    that->initRaster( rect, raster );
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
    for ( int y = 0; y < raster.height() - 1; y++ )
    {
        enum Position
        {
pixhawk's avatar
pixhawk committed
            Center,

            TopLeft,
            TopRight,
            BottomRight,
            BottomLeft,

            NumPositions
        };

Bryant's avatar
Bryant committed
        QwtPoint3D xy[NumPositions];
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
        for ( int x = 0; x < raster.width() - 1; x++ )
        {
            const QPointF pos( rect.x() + x * dx, rect.y() + y * dy );
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
            if ( x == 0 )
            {
                xy[TopRight].setX( pos.x() );
                xy[TopRight].setY( pos.y() );
pixhawk's avatar
pixhawk committed
                xy[TopRight].setZ(
Bryant's avatar
Bryant committed
                    value( xy[TopRight].x(), xy[TopRight].y() )
pixhawk's avatar
pixhawk committed
                );

Bryant's avatar
Bryant committed
                xy[BottomRight].setX( pos.x() );
                xy[BottomRight].setY( pos.y() + dy );
pixhawk's avatar
pixhawk committed
                xy[BottomRight].setZ(
Bryant's avatar
Bryant committed
                    value( xy[BottomRight].x(), xy[BottomRight].y() )
pixhawk's avatar
pixhawk committed
                );
            }

            xy[TopLeft] = xy[TopRight];
            xy[BottomLeft] = xy[BottomRight];

Bryant's avatar
Bryant committed
            xy[TopRight].setX( pos.x() + dx );
            xy[TopRight].setY( pos.y() );
            xy[BottomRight].setX( pos.x() + dx );
            xy[BottomRight].setY( pos.y() + dy );
pixhawk's avatar
pixhawk committed

            xy[TopRight].setZ(
Bryant's avatar
Bryant committed
                value( xy[TopRight].x(), xy[TopRight].y() )
pixhawk's avatar
pixhawk committed
            );
            xy[BottomRight].setZ(
Bryant's avatar
Bryant committed
                value( xy[BottomRight].x(), xy[BottomRight].y() )
pixhawk's avatar
pixhawk committed
            );

            double zMin = xy[TopLeft].z();
            double zMax = zMin;
            double zSum = zMin;

Bryant's avatar
Bryant committed
            for ( int i = TopRight; i <= BottomLeft; i++ )
            {
pixhawk's avatar
pixhawk committed
                const double z = xy[i].z();

                zSum += z;
                if ( z < zMin )
                    zMin = z;
                if ( z > zMax )
                    zMax = z;
            }

Bryant's avatar
Bryant committed
            if ( qIsNaN( zSum ) )
            {
                // one of the points is NaN
                continue;
            }

            if ( ignoreOutOfRange )
            {
                if ( !range.contains( zMin ) || !range.contains( zMax ) )
pixhawk's avatar
pixhawk committed
                    continue;
            }

            if ( zMax < levels[0] ||
Bryant's avatar
Bryant committed
                zMin > levels[levels.size() - 1] )
            {
pixhawk's avatar
pixhawk committed
                continue;
            }

Bryant's avatar
Bryant committed
            xy[Center].setX( pos.x() + 0.5 * dx );
            xy[Center].setY( pos.y() + 0.5 * dy );
            xy[Center].setZ( 0.25 * zSum );

            const int numLevels = levels.size();
            for ( int l = 0; l < numLevels; l++ )
            {
pixhawk's avatar
pixhawk committed
                const double level = levels[l];
                if ( level < zMin || level > zMax )
                    continue;
                QPolygonF &lines = contourLines[level];
Bryant's avatar
Bryant committed
                const ContourPlane plane( level );
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
                QPointF line[2];
                QwtPoint3D vertex[3];
pixhawk's avatar
pixhawk committed

Bryant's avatar
Bryant committed
                for ( int m = TopLeft; m < NumPositions; m++ )
                {
pixhawk's avatar
pixhawk committed
                    vertex[0] = xy[m];
                    vertex[1] = xy[0];
                    vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];

                    const bool intersects =
Bryant's avatar
Bryant committed
                        plane.intersect( vertex, line, ignoreOnPlane );
                    if ( intersects )
                    {
pixhawk's avatar
pixhawk committed
                        lines += line[0];
                        lines += line[1];
                    }
                }
            }
        }
    }

Bryant's avatar
Bryant committed
    that->discardRaster();
pixhawk's avatar
pixhawk committed

    return contourLines;
}