Newer
Older
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
* Qwt Widget Library
* Copyright (C) 1997 Josef Wilgen
* Copyright (C) 2002 Uwe Rathmann
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the Qwt License, Version 1.0
*****************************************************************************/
#include "qwt_raster_data.h"
class QwtRasterData::Contour3DPoint
{
public:
inline void setPos(double x, double y) {
inline QwtDoublePoint pos() const {
inline void setX(double x) {
d_x = x;
}
inline void setY(double y) {
d_y = y;
}
inline void setZ(double z) {
d_z = z;
}
inline double x() const {
return d_x;
}
inline double y() const {
return d_y;
}
inline double z() const {
return d_z;
}
private:
double d_x;
double d_y;
double d_z;
};
class QwtRasterData::ContourPlane
{
public:
inline ContourPlane(double z):
QwtDoublePoint line[2], bool ignoreOnPlane) const;
inline double z() const {
return d_z;
}
private:
inline int compare(double z) const;
inline QwtDoublePoint intersection(
const Contour3DPoint& p1, const Contour3DPoint &p2) const;
double d_z;
};
inline bool QwtRasterData::ContourPlane::intersect(
const Contour3DPoint vertex[3], QwtDoublePoint line[2],
bool ignoreOnPlane) const
{
bool found = true;
// Are the vertices below (-1), on (0) or above (1) the plan ?
const int eq1 = compare(vertex[0].z());
const int eq2 = compare(vertex[1].z());
const int eq3 = compare(vertex[2].z());
/*
(a) All the vertices lie below the contour level.
(b) Two vertices lie below and one on the contour level.
(c) Two vertices lie below and one above the contour level.
(d) One vertex lies below and two on the contour level.
(e) One vertex lies below, one on and one above the contour level.
(f) One vertex lies below and two above the contour level.
(g) Three vertices lie on the contour level.
(h) Two vertices lie on and one above the contour level.
(i) One vertex lies on and two above the contour level.
(j) All the vertices lie above the contour level.
*/
// jump table to avoid nested case statements
{ { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
{ { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
{ { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
};
const int edgeType = tab[eq1+1][eq2+1][eq3+1];
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
switch (edgeType) {
case 1:
// d(0,0,-1), h(0,0,1)
line[0] = vertex[0].pos();
line[1] = vertex[1].pos();
break;
case 2:
// d(-1,0,0), h(1,0,0)
line[0] = vertex[1].pos();
line[1] = vertex[2].pos();
break;
case 3:
// d(0,-1,0), h(0,1,0)
line[0] = vertex[2].pos();
line[1] = vertex[0].pos();
break;
case 4:
// e(0,-1,1), e(0,1,-1)
line[0] = vertex[0].pos();
line[1] = intersection(vertex[1], vertex[2]);
break;
case 5:
// e(-1,0,1), e(1,0,-1)
line[0] = vertex[1].pos();
line[1] = intersection(vertex[2], vertex[0]);
break;
case 6:
// e(-1,1,0), e(1,0,-1)
line[0] = vertex[1].pos();
line[1] = intersection(vertex[0], vertex[1]);
break;
case 7:
// c(-1,1,-1), f(1,1,-1)
line[0] = intersection(vertex[0], vertex[1]);
line[1] = intersection(vertex[1], vertex[2]);
break;
case 8:
// c(-1,-1,1), f(1,1,-1)
line[0] = intersection(vertex[1], vertex[2]);
line[1] = intersection(vertex[2], vertex[0]);
break;
case 9:
// f(-1,1,1), c(1,-1,-1)
line[0] = intersection(vertex[2], vertex[0]);
line[1] = intersection(vertex[0], vertex[1]);
break;
case 10:
// g(0,0,0)
// The CONREC algorithm has no satisfying solution for
// what to do, when all vertices are on the plane.
if ( ignoreOnPlane )
found = false;
else {
}
break;
default:
found = false;
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
}
return found;
}
inline int QwtRasterData::ContourPlane::compare(double z) const
{
if (z > d_z)
return 1;
if (z < d_z)
return -1;
return 0;
}
inline QwtDoublePoint QwtRasterData::ContourPlane::intersection(
const Contour3DPoint& p1, const Contour3DPoint &p2) const
{
const double h1 = p1.z() - d_z;
const double h2 = p2.z() - d_z;
const double x = (h2 * p1.x() - h1 * p2.x()) / (h2 - h1);
const double y = (h2 * p1.y() - h1 * p2.y()) / (h2 - h1);
return QwtDoublePoint(x, y);
}
QwtRasterData::QwtRasterData()
{
}
QwtRasterData::QwtRasterData(const QwtDoubleRect &boundingRect):
d_boundingRect(boundingRect)
{
}
QwtRasterData::~QwtRasterData()
{
}
void QwtRasterData::setBoundingRect(const QwtDoubleRect &boundingRect)
{
d_boundingRect = boundingRect;
}
QwtDoubleRect QwtRasterData::boundingRect() const
{
return d_boundingRect;
}
/*!
\brief Initialize a raster
Before the composition of an image QwtPlotSpectrogram calls initRaster,
announcing the area and its resolution that will be requested.
The default implementation does nothing, but for data sets that
are stored in files, it might be good idea to reimplement initRaster,
where the data is resampled and loaded into memory.
\param rect Area of the raster
\param raster Number of horizontal and vertical pixels
\sa initRaster(), value()
*/
void QwtRasterData::initRaster(const QwtDoubleRect &, const QSize&)
{
}
/*!
\brief Discard a raster
After the composition of an image QwtPlotSpectrogram calls discardRaster().
The default implementation does nothing, but if data has been loaded
in initRaster(), it could deleted now.
\sa initRaster(), value()
*/
void QwtRasterData::discardRaster()
{
}
/*!
\brief Find the raster of the data for an area
The resolution is the number of horizontal and vertical pixels
that the data can return for an area. An invalid resolution
indicates that the data can return values for any detail level.
The resolution will limit the size of the image that is rendered
from the data. F.e. this might be important when printing a spectrogram
to a A0 printer with 600 dpi.
The default implementation returns an invalid resolution (size)
\param rect In most implementations the resolution of the data doesn't
depend on the requested rectangle.
\return Resolution, as number of horizontal and vertical pixels
*/
QSize QwtRasterData::rasterHint(const QwtDoubleRect &) const
{
return QSize(); // use screen resolution
}
/*!
Calculate contour lines
An adaption of CONREC, a simple contouring algorithm.
http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
#if QT_VERSION >= 0x040000
QwtRasterData::ContourLines QwtRasterData::contourLines(
const QwtDoubleRect &rect, const QSize &raster,
const QList<double> &levels, int flags) const
#else
QwtRasterData::ContourLines QwtRasterData::contourLines(
const QwtDoubleRect &rect, const QSize &raster,
if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
return contourLines;
const double dx = rect.width() / raster.width();
const double dy = rect.height() / raster.height();
const bool ignoreOnPlane =
flags & QwtRasterData::IgnoreAllVerticesOnLevel;
const QwtDoubleInterval range = this->range();
bool ignoreOutOfRange = false;
if ( range.isValid() )
ignoreOutOfRange = flags & IgnoreOutOfRange;
((QwtRasterData*)this)->initRaster(rect, raster);
for ( int y = 0; y < raster.height() - 1; y++ ) {
enum Position {
Center,
TopLeft,
TopRight,
BottomRight,
BottomLeft,
NumPositions
};
Contour3DPoint xy[NumPositions];
for ( int x = 0; x < raster.width() - 1; x++ ) {
const QwtDoublePoint pos(rect.x() + x * dx, rect.y() + y * dy);
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
xy[TopRight].setPos(pos.x(), pos.y());
xy[TopRight].setZ(
value( xy[TopRight].x(), xy[TopRight].y())
);
xy[BottomRight].setPos(pos.x(), pos.y() + dy);
xy[BottomRight].setZ(
value(xy[BottomRight].x(), xy[BottomRight].y())
);
}
xy[TopLeft] = xy[TopRight];
xy[BottomLeft] = xy[BottomRight];
xy[TopRight].setPos(pos.x() + dx, pos.y());
xy[BottomRight].setPos(pos.x() + dx, pos.y() + dy);
xy[TopRight].setZ(
value(xy[TopRight].x(), xy[TopRight].y())
);
xy[BottomRight].setZ(
value(xy[BottomRight].x(), xy[BottomRight].y())
);
double zMin = xy[TopLeft].z();
double zMax = zMin;
double zSum = zMin;
for ( int i = TopRight; i <= BottomLeft; i++ ) {
const double z = xy[i].z();
zSum += z;
if ( z < zMin )
zMin = z;
if ( z > zMax )
zMax = z;
}
if ( !range.contains(zMin) || !range.contains(zMax) )
continue;
}
if ( zMax < levels[0] ||
zMin > levels[levels.size() - 1] ) {
continue;
}
xy[Center].setPos(pos.x() + 0.5 * dx, pos.y() + 0.5 * dy);
xy[Center].setZ(0.25 * zSum);
const int numLevels = (int)levels.size();
for (int l = 0; l < numLevels; l++) {
const double level = levels[l];
if ( level < zMin || level > zMax )
continue;
#if QT_VERSION >= 0x040000
QPolygonF &lines = contourLines[level];
#else
QwtArray<QwtDoublePoint> &lines = contourLines[level];
#endif
const ContourPlane plane(level);
QwtDoublePoint line[2];
Contour3DPoint vertex[3];
for (int m = TopLeft; m < NumPositions; m++) {
vertex[0] = xy[m];
vertex[1] = xy[0];
vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];
const bool intersects =
plane.intersect(vertex, line, ignoreOnPlane);
#if QT_VERSION >= 0x040000
lines += line[0];
lines += line[1];
#else
const int index = lines.size();
lines.resize(lines.size() + 2, QGArray::SpeedOptim);
lines[index] = line[0];
lines[index+1] = line[1];
#endif
}
}
}
}
}
((QwtRasterData*)this)->discardRaster();
return contourLines;
}