IncompleteLUT.h 14.5 KB
Newer Older
Don Gagne's avatar
Don Gagne committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H


namespace Eigen { 

namespace internal {
    
/** \internal
  * Compute a quick-sort split of a vector 
  * On output, the vector row is permuted such that its elements satisfy
  * abs(row(i)) >= abs(row(ncut)) if i<ncut
  * abs(row(i)) <= abs(row(ncut)) if i>ncut 
  * \param row The vector of values
  * \param ind The array of index for the elements in @p row
  * \param ncut  The number of largest elements to keep
  **/ 
template <typename VectorV, typename VectorI, typename Index>
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
{
  typedef typename VectorV::RealScalar RealScalar;
  using std::swap;
  using std::abs;
  Index mid;
  Index n = row.size(); /* length of the vector */
  Index first, last ;
  
  ncut--; /* to fit the zero-based indices */
  first = 0; 
  last = n-1; 
  if (ncut < first || ncut > last ) return 0;
  
  do {
    mid = first; 
    RealScalar abskey = abs(row(mid)); 
    for (Index j = first + 1; j <= last; j++) {
      if ( abs(row(j)) > abskey) {
        ++mid;
        swap(row(mid), row(j));
        swap(ind(mid), ind(j));
      }
    }
    /* Interchange for the pivot element */
    swap(row(mid), row(first));
    swap(ind(mid), ind(first));
    
    if (mid > ncut) last = mid - 1;
    else if (mid < ncut ) first = mid + 1; 
  } while (mid != ncut );
  
  return 0; /* mid is equal to ncut */ 
}

}// end namespace internal

/** \ingroup IterativeLinearSolvers_Module
  * \class IncompleteLUT
  * \brief Incomplete LU factorization with dual-threshold strategy
  *
  * During the numerical factorization, two dropping rules are used :
  *  1) any element whose magnitude is less than some tolerance is dropped.
  *    This tolerance is obtained by multiplying the input tolerance @p droptol 
  *    by the average magnitude of all the original elements in the current row.
  *  2) After the elimination of the row, only the @p fill largest elements in 
  *    the L part and the @p fill largest elements in the U part are kept 
  *    (in addition to the diagonal element ). Note that @p fill is computed from 
  *    the input parameter @p fillfactor which is used the ratio to control the fill_in 
  *    relatively to the initial number of nonzero elements.
  * 
  * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
  * and when @p fill=n/2 with @p droptol being different to zero. 
  * 
  * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, 
  *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
  * 
  * NOTE : The following implementation is derived from the ILUT implementation
  * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota 
  *  released under the terms of the GNU LGPL: 
  *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
  * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
  * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
  *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
  * alternatively, on GMANE:
  *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
  */
template <typename _Scalar>
class IncompleteLUT : internal::noncopyable
{
    typedef _Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef SparseMatrix<Scalar,RowMajor> FactorType;
    typedef SparseMatrix<Scalar,ColMajor> PermutType;
    typedef typename FactorType::Index Index;

  public:
    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
    
    IncompleteLUT()
      : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
        m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
    {}
    
    template<typename MatrixType>
    IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
      : m_droptol(droptol),m_fillfactor(fillfactor),
        m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
    {
      eigen_assert(fillfactor != 0);
      compute(mat); 
    }
    
    Index rows() const { return m_lu.rows(); }
    
    Index cols() const { return m_lu.cols(); }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
      return m_info;
    }
    
    template<typename MatrixType>
    void analyzePattern(const MatrixType& amat);
    
    template<typename MatrixType>
    void factorize(const MatrixType& amat);
    
    /**
      * Compute an incomplete LU factorization with dual threshold on the matrix mat
      * No pivoting is done in this version
      * 
      **/
    template<typename MatrixType>
    IncompleteLUT<Scalar>& compute(const MatrixType& amat)
    {
      analyzePattern(amat); 
      factorize(amat);
      m_isInitialized = m_factorizationIsOk;
      return *this;
    }

    void setDroptol(const RealScalar& droptol); 
    void setFillfactor(int fillfactor); 
    
    template<typename Rhs, typename Dest>
    void _solve(const Rhs& b, Dest& x) const
    {
      x = m_Pinv * b;  
      x = m_lu.template triangularView<UnitLower>().solve(x);
      x = m_lu.template triangularView<Upper>().solve(x);
      x = m_P * x; 
    }

    template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
     solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
      eigen_assert(cols()==b.rows()
                && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
    }

protected:

    /** keeps off-diagonal entries; drops diagonal entries */
    struct keep_diag {
      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
      {
        return row!=col;
      }
    };

protected:

    FactorType m_lu;
    RealScalar m_droptol;
    int m_fillfactor;
    bool m_analysisIsOk;
    bool m_factorizationIsOk;
    bool m_isInitialized;
    ComputationInfo m_info;
    PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
    PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
};

/**
 * Set control parameter droptol
 *  \param droptol   Drop any element whose magnitude is less than this tolerance 
 **/ 
template<typename Scalar>
void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
{
  this->m_droptol = droptol;   
}

/**
 * Set control parameter fillfactor
 * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row. 
 **/ 
template<typename Scalar>
void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
{
  this->m_fillfactor = fillfactor;   
}

template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
{
  // Compute the Fill-reducing permutation
  SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
  SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
  // Symmetrize the pattern
  // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
  //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
  SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
  AtA.prune(keep_diag());
  internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...

  m_Pinv  = m_P.inverse(); // ... and the inverse permutation

  m_analysisIsOk = true;
}

template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
{
  using std::sqrt;
  using std::swap;
  using std::abs;

  eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
  Index n = amat.cols();  // Size of the matrix
  m_lu.resize(n,n);
  // Declare Working vectors and variables
  Vector u(n) ;     // real values of the row -- maximum size is n --
  VectorXi ju(n);   // column position of the values in u -- maximum size  is n
  VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1

  // Apply the fill-reducing permutation
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  SparseMatrix<Scalar,RowMajor, Index> mat;
  mat = amat.twistedBy(m_Pinv);

  // Initialization
  jr.fill(-1);
  ju.fill(0);
  u.fill(0);

  // number of largest elements to keep in each row:
  Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
  if (fill_in > n) fill_in = n;

  // number of largest nonzero elements to keep in the L and the U part of the current row:
  Index nnzL = fill_in/2;
  Index nnzU = nnzL;
  m_lu.reserve(n * (nnzL + nnzU + 1));

  // global loop over the rows of the sparse matrix
  for (Index ii = 0; ii < n; ii++)
  {
    // 1 - copy the lower and the upper part of the row i of mat in the working vector u

    Index sizeu = 1; // number of nonzero elements in the upper part of the current row
    Index sizel = 0; // number of nonzero elements in the lower part of the current row
    ju(ii)    = ii;
    u(ii)     = 0;
    jr(ii)    = ii;
    RealScalar rownorm = 0;

    typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
    for (; j_it; ++j_it)
    {
      Index k = j_it.index();
      if (k < ii)
      {
        // copy the lower part
        ju(sizel) = k;
        u(sizel) = j_it.value();
        jr(k) = sizel;
        ++sizel;
      }
      else if (k == ii)
      {
        u(ii) = j_it.value();
      }
      else
      {
        // copy the upper part
        Index jpos = ii + sizeu;
        ju(jpos) = k;
        u(jpos) = j_it.value();
        jr(k) = jpos;
        ++sizeu;
      }
      rownorm += numext::abs2(j_it.value());
    }

    // 2 - detect possible zero row
    if(rownorm==0)
    {
      m_info = NumericalIssue;
      return;
    }
    // Take the 2-norm of the current row as a relative tolerance
    rownorm = sqrt(rownorm);

    // 3 - eliminate the previous nonzero rows
    Index jj = 0;
    Index len = 0;
    while (jj < sizel)
    {
      // In order to eliminate in the correct order,
      // we must select first the smallest column index among  ju(jj:sizel)
      Index k;
      Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
      k += jj;
      if (minrow != ju(jj))
      {
        // swap the two locations
        Index j = ju(jj);
        swap(ju(jj), ju(k));
        jr(minrow) = jj;   jr(j) = k;
        swap(u(jj), u(k));
      }
      // Reset this location
      jr(minrow) = -1;

      // Start elimination
      typename FactorType::InnerIterator ki_it(m_lu, minrow);
      while (ki_it && ki_it.index() < minrow) ++ki_it;
      eigen_internal_assert(ki_it && ki_it.col()==minrow);
      Scalar fact = u(jj) / ki_it.value();

      // drop too small elements
      if(abs(fact) <= m_droptol)
      {
        jj++;
        continue;
      }

      // linear combination of the current row ii and the row minrow
      ++ki_it;
      for (; ki_it; ++ki_it)
      {
        Scalar prod = fact * ki_it.value();
        Index j       = ki_it.index();
        Index jpos    = jr(j);
        if (jpos == -1) // fill-in element
        {
          Index newpos;
          if (j >= ii) // dealing with the upper part
          {
            newpos = ii + sizeu;
            sizeu++;
            eigen_internal_assert(sizeu<=n);
          }
          else // dealing with the lower part
          {
            newpos = sizel;
            sizel++;
            eigen_internal_assert(sizel<=ii);
          }
          ju(newpos) = j;
          u(newpos) = -prod;
          jr(j) = newpos;
        }
        else
          u(jpos) -= prod;
      }
      // store the pivot element
      u(len) = fact;
      ju(len) = minrow;
      ++len;

      jj++;
    } // end of the elimination on the row ii

    // reset the upper part of the pointer jr to zero
    for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;

    // 4 - partially sort and insert the elements in the m_lu matrix

    // sort the L-part of the row
    sizel = len;
    len = (std::min)(sizel, nnzL);
    typename Vector::SegmentReturnType ul(u.segment(0, sizel));
    typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
    internal::QuickSplit(ul, jul, len);

    // store the largest m_fill elements of the L part
    m_lu.startVec(ii);
    for(Index k = 0; k < len; k++)
      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);

    // store the diagonal element
    // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
    if (u(ii) == Scalar(0))
      u(ii) = sqrt(m_droptol) * rownorm;
    m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);

    // sort the U-part of the row
    // apply the dropping rule first
    len = 0;
    for(Index k = 1; k < sizeu; k++)
    {
      if(abs(u(ii+k)) > m_droptol * rownorm )
      {
        ++len;
        u(ii + len)  = u(ii + k);
        ju(ii + len) = ju(ii + k);
      }
    }
    sizeu = len + 1; // +1 to take into account the diagonal element
    len = (std::min)(sizeu, nnzU);
    typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
    typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
    internal::QuickSplit(uu, juu, len);

    // store the largest elements of the U part
    for(Index k = ii + 1; k < ii + len; k++)
      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
  }

  m_lu.finalize();
  m_lu.makeCompressed();

  m_factorizationIsOk = true;
  m_info = Success;
}

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
  : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
{
  typedef IncompleteLUT<_MatrixType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_INCOMPLETE_LUT_H