Newer
Older
using namespace snake_geometry;
using namespace std;
namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;
_mAreaBoundingBox(min_bbox_rt{0, 0, 0, BoostPolygon{}})
{
if (area.geoPolygon.size() < 3){
errorString = "Area has less than three vertices.";
return false;
}
if (area.type == MeasurementArea)
return Scenario::_setMeasurementArea(area);
else if (area.type == ServiceArea)
return Scenario::_setServiceArea(area);
else if (area.type == Corridor)
return Scenario::_setCorridor(area);
return false;
bool Scenario::defined(double tileWidth, double tileHeight, double minTileArea)
{
if (!_areas2enu())
return false;
if (!_calculateBoundingBox())
return false;
if (!_calculateTiles(tileWidth, tileHeight, minTileArea))
return false;
if (!_calculateJoinedArea())
return false;
bool Scenario::_areas2enu()
{
if (_measurementArea.geoPolygon.size() > 0){
_measurementAreaENU.clear();
for(auto vertex : _measurementArea.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _measurementArea.altitude}, ENUVertex);
_measurementAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
}
bg::correct(_measurementAreaENU);
_serviceAreaENU.clear();
if (_serviceArea.geoPolygon.size() > 0){
for(auto vertex : _serviceArea.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _serviceArea.altitude}, ENUVertex);
_serviceAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
} else{
errorString = "Service area has no vertices.";
return false;
}
bg::correct(_serviceAreaENU);
polygonCenter(_serviceAreaENU, _homePositionENU);
_corridorENU.clear();
if (_corridor.geoPolygon.size() > 0){
for(auto vertex : _corridor.geoPolygon) {
Point3D ENUVertex;
toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _corridor.altitude}, ENUVertex);
_corridorENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
}
errorString = "Measurement area has no vertices.";
return false;
}
bool Scenario::_setMeasurementArea(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
GeoPoint2D origin2D = area.geoPolygon[0];
_geoOrigin = GeoPoint3D{origin2D[0], origin2D[1], 0};
_measurementArea = area;
_measurementAreaENU.clear();
_serviceAreaENU.clear();
_corridorENU.clear();
return true;
}
bool Scenario::_setServiceArea(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
_serviceArea = area;
_serviceAreaENU.clear();
return true;
}
bool Scenario::_setCorridor(Area &area)
{
if (area.geoPolygon.size() <= 0)
return false;
_corridor = area;
_corridorENU.clear();
return true;
}
bool Scenario::_calculateBoundingBox()
{
minimalBoundingBox(_measurementAreaENU, _mAreaBoundingBox);
return true;
}
/**
* Devides the (measurement area) bounding box into tiles and clips it to the measurement area.
*
* Devides the (measurement area) bounding box into tiles of width \p tileWidth and height \p tileHeight.
* Clips the resulting tiles to the measurement area. Tiles are rejected, if their area is smaller than \p minTileArea.
* The function assumes that \a _measurementAreaENU and \a _mAreaBoundingBox have correct values. \see \ref Scenario::_areas2enu() and \ref
* Scenario::_calculateBoundingBox().
*
* @param tileWidth The width (>0) of a tile.
* @param tileHeight The heigth (>0) of a tile.
* @param minTileArea The minimal area (>0) of a tile.
*
* @return Returns true if successful.
*/
bool Scenario::_calculateTiles(double tileWidth, double tileHeight, double minTileArea)
{
_tilesENU.clear();
_tileCenterPointsENU.clear();
if (tileWidth <= 0 || tileHeight <= 0 || minTileArea <= 0) {
errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive.";
return false;
double bbox_width = _mAreaBoundingBox.width;
double bbox_height = _mAreaBoundingBox.height;
BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];
//cout << "Origin: " << origin[0] << " " << origin[1] << endl;
// Transform _measurementAreaENU polygon to bounding box coordinate system.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(_mAreaBoundingBox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(), -origin.get<1>());
BoostPolygon translated_polygon;
BoostPolygon rotated_polygon;
boost::geometry::transform(_measurementAreaENU, translated_polygon, translate);
boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
bg::correct(rotated_polygon);
//cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;
size_t i_max = ceil(bbox_width/tileWidth);
size_t j_max = ceil(bbox_height/tileHeight);
if (i_max < 1 || j_max < 1) {
errorString = "tileWidth or tileHeight to small.";
return false;
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-_mAreaBoundingBox.angle*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(), origin.get<1>());
for (size_t i = 0; i < i_max; ++i){
double x_min = tileWidth*i;
double x_max = x_min + tileWidth;
for (size_t j = 0; j < j_max; ++j){
double y_min = tileHeight*j;
double y_max = y_min + tileHeight;
BoostPolygon tile_unclipped;
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
std::deque<BoostPolygon> boost_tiles;
if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles))
continue;
for (BoostPolygon t : boost_tiles)
{
if (bg::area(t) > minTileArea){
// Transform boost_tile to world coordinate system.
BoostPolygon rotated_tile;
BoostPolygon translated_tile;
boost::geometry::transform(t, rotated_tile, rotate_back);
boost::geometry::transform(rotated_tile, translated_tile, translate_back);
// Store tile and calculate center point.
_tilesENU.push_back(translated_tile);
BoostPoint tile_center;
polygonCenter(translated_tile, tile_center);
_tileCenterPointsENU.push_back(tile_center);
}
}
}
if (_tilesENU.size() < 1){
errorString = "No tiles calculated. Is the minTileArea parameter large enough?";
return false;
bool Scenario::_calculateJoinedArea()
{
_joinedAreaENU.clear();
// Measurement area and service area overlapping?
bool overlapingSerMeas = bg::intersects(_measurementAreaENU, _serviceAreaENU) ? true : false;
bool corridorValid = _corridorENU.outer().size() > 0 ? true : false;
// Check if corridor is connecting measurement area and service area.
bool corridor_is_connection = false;
if (corridorValid) {
// Corridor overlaping with measurement area?
if ( bg::intersects(_corridorENU, _measurementAreaENU) ) {
// Corridor overlaping with service area?
if ( bg::intersects(_corridorENU, _serviceAreaENU) )
corridor_is_connection = true;
// Are areas joinable?
std::deque<BoostPolygon> sol;
BoostPolygon partialArea = _measurementAreaENU;
if (overlapingSerMeas){
if(corridor_is_connection){
bg::union_(partialArea, _corridorENU, sol);
} else if (corridor_is_connection){
bg::union_(partialArea, _corridorENU, sol);
} else {
errorString = "Areas are not overlapping";
return false;
}
if (sol.size() > 0) {
partialArea = sol[0];
sol.clear();
}
// Join areas.
bg::union_(partialArea, _serviceAreaENU, sol);
if (sol.size() > 0) {
_joinedAreaENU = sol[0];
} else {
return false;
}
FlightPlan::FlightPlan()
{
}
bool FlightPlan::generate(double lineDistance, double minTransectLength)
{
_waypointsENU.clear();
#ifndef NDEBUG
_PathVertices.clear();
#endif
auto start = std::chrono::high_resolution_clock::now();
if (!_generateTransects(lineDistance, minTransectLength))
return false;
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << endl;
cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;
//=======================================
// Route Transects using Google or-tools.
//=======================================
// Offset joined area.
const BoostPolygon &jArea = _scenario.getJoineAreaENU();
BoostPolygon jAreaOffset;
offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);
// Create vertex list;
BoostLineString vertices;
size_t n0 = _transects.size()*2+1;
vertices.reserve(n0);
for (auto lstring : _transects){
for (auto vertex : lstring){
vertices.push_back(vertex);
}
}
vertices.push_back(_scenario.getHomePositonENU());
for (long i=0; i<long(jArea.outer().size())-1; ++i) {
vertices.push_back(jArea.outer()[i]);
}
for (auto ring : jArea.inners()) {
for (auto vertex : ring)
vertices.push_back(vertex);
}
size_t n1 = vertices.size();
// Generate routing model.
RoutingDataModel_t dataModel;
Matrix<double> connectionGraph(n1, n1);
start = std::chrono::high_resolution_clock::now();
_generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;
// Create Routing Index Manager.
RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles,
dataModel.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
// Convert from routing variable Index to distance matrix NodeIndex.
auto from_node = manager.IndexToNode(from_index).value();
auto to_node = manager.IndexToNode(to_index).value();
return dataModel.distanceMatrix.get(from_node, to_node);
});
// Define Constraints.
size_t n = _transects.size()*2;
Solver *solver = routing.solver();
for (size_t i=0; i<n; i=i+2){
// auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
// auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
// auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
// auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
// auto c = solver->MakeNonEquality(cond0, cond1);
// solver->AddConstraint(c);
// alternative
auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
vector<IntVar*> conds{cond0, cond1};
auto c = solver->MakeAllDifferent(conds);
solver->MakeRejectFilter();
solver->AddConstraint(c);
}
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
tMax->set_seconds(10);
searchParameters.set_allocated_time_limit(tMax);
// Solve the problem.
start = std::chrono::high_resolution_clock::now();
const Assignment* solution = routing.SolveWithParameters(searchParameters);
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;
if (!solution || solution->Size() <= 1){
errorString = "Not able to solve the routing problem.";
return false;
}
// Extract waypoints from solution.
long index = routing.Start(0);
std::vector<size_t> route;
route.push_back(manager.IndexToNode(index).value());
while (!routing.IsEnd(index)){
index = solution->Value(routing.NextVar(index));
route.push_back(manager.IndexToNode(index).value());
}
// Connect transects
#ifndef NDEBUG
_PathVertices = vertices;
#endif
{
_waypointsENU.push_back(vertices[route[0]]);
vector<size_t> pathIdx;
for (long i=0; i<long(route.size())-1; ++i){
size_t idx0 = route[i];
size_t idx1 = route[i+1];
pathIdx.clear();
shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
for (size_t j=1; j<pathIdx.size(); ++j)
_waypointsENU.push_back(vertices[pathIdx[j]]);
}
}
bool FlightPlan::_generateTransects(double lineDistance, double minTransectLength)
{
if (_scenario.getTilesENU().size() != _progress.size()){
errorString = "Number of tiles is not equal to progress array length";
// Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
size_t num_tiles = _progress.size();
vector<BoostPolygon> processedTiles;
{
const auto &tiles = _scenario.getTilesENU();
for (size_t i=0; i<num_tiles; ++i) {
if (_progress[i] == 100){
processedTiles.push_back(tiles[i]);
}
}
if (processedTiles.size() == num_tiles)
return true;
// Convert measurement area and tiles to clipper path.
ClipperLib::Path mAreaClipper;
for ( auto vertex : _scenario.getMeasurementAreaENU().outer() ){
mAreaClipper.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
vector<ClipperLib::Path> processedTilesClipper;
for (auto t : processedTiles){
ClipperLib::Path path;
for (auto vertex : t.outer()){
path.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
}
processedTilesClipper.push_back(path);
}
const min_bbox_rt &bbox = _scenario.getMeasurementAreaBBoxENU();
double alpha = bbox.angle;
double x0 = bbox.corners.outer()[0].get<0>();
double y0 = bbox.corners.outer()[0].get<1>();
double bboxWidth = bbox.width;
double bboxHeight = bbox.height;
double delta = detail::offsetConstant;
size_t num_t = int(ceil((bboxHeight + 2*delta)/lineDistance)); // number of transects
vector<double> yCoords;
yCoords.reserve(num_t);
double y = -delta;
for (size_t i=0; i < num_t; ++i) {
yCoords.push_back(y);
y += lineDistance;
}
// Generate transects and convert them to clipper path.
trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-alpha*180/M_PI);
trans::translate_transformer<double, 2, 2> translate_back(x0, y0);
vector<ClipperLib::Path> transectsClipper;
transectsClipper.reserve(num_t);
BoostPoint v1{-delta, yCoords[i]};
BoostPoint v2{bboxWidth+delta, yCoords[i]};
BoostLineString transect;
transect.push_back(v1);
transect.push_back(v2);
// transform back
BoostLineString temp_transect;
bg::transform(transect, temp_transect, rotate_back);
transect.clear();
bg::transform(temp_transect, transect, translate_back);
ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(transect[0].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[0].get<1>()*CLIPPER_SCALE)};
ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(transect[1].get<0>()*CLIPPER_SCALE),
static_cast<ClipperLib::cInt>(transect[1].get<1>()*CLIPPER_SCALE)};
ClipperLib::Path path{c1, c2};
transectsClipper.push_back(path);
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// Perform clipping.
// Clip transects to measurement area.
ClipperLib::Clipper clipper;
clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
ClipperLib::PolyTree clippedTransecsPolyTree1;
clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Subtract holes (tiles with measurement_progress == 100) from transects.
clipper.Clear();
for (auto child : clippedTransecsPolyTree1.Childs)
clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
ClipperLib::PolyTree clippedTransecsPolyTree2;
clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
// Extract transects from PolyTree and convert them to BoostLineString
for (auto child : clippedTransecsPolyTree2.Childs){
ClipperLib::Path clipperTransect = child->Contour;
BoostPoint v1{static_cast<double>(clipperTransect[0].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[0].Y)/CLIPPER_SCALE};
BoostPoint v2{static_cast<double>(clipperTransect[1].X)/CLIPPER_SCALE,
static_cast<double>(clipperTransect[1].Y)/CLIPPER_SCALE};
BoostLineString transect{v1, v2};
if (bg::length(transect) >= minTransectLength)
_transects.push_back(transect);
}
void FlightPlan::_generateRoutingModel(const BoostLineString &vertices,
const BoostPolygon &polygonOffset,
size_t n0,
FlightPlan::RoutingDataModel_t &dataModel,
Matrix<double> &graph)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
auto start = std::chrono::high_resolution_clock::now();
graphFromPolygon(polygonOffset, vertices, graph);
auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl;
// cout << endl;
// for (size_t i=0; i<graph.size(); ++i){
// vector<double> &row = graph[i];
// for (size_t j=0; j<row.size();++j){
// cout << "(" << i << "," << j << "):" << row[j] << " ";
// }
// cout << endl;
// }
// cout << endl;
Matrix<double> distanceMatrix(graph);
start = std::chrono::high_resolution_clock::now();
toDistanceMatrix(distanceMatrix);
delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl;
dataModel.distanceMatrix.setDimension(n0, n0);
for (size_t i=0; i<n0; ++i){
dataModel.distanceMatrix.set(i, i, 0);
for (size_t j=i+1; j<n0; ++j){
dataModel.distanceMatrix.set(i, j, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
dataModel.distanceMatrix.set(j, i, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
}
}