FullPivHouseholderQR.h 21 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H

/** \ingroup QR_Module
  *
  * \class FullPivHouseholderQR
  *
  * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
  *
  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
  *
  * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
  * such that 
  * \f[
  *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
  * \f]
  * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an 
  * upper triangular matrix.
  *
  * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
  * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
  *
  * \sa MatrixBase::fullPivHouseholderQr()
  */
template<typename _MatrixType> class FullPivHouseholderQR
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
    typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
    typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
      */
    FullPivHouseholderQR()
      : m_qr(),
        m_hCoeffs(),
        m_rows_transpositions(),
        m_cols_transpositions(),
        m_cols_permutation(),
        m_temp(),
        m_isInitialized(false),
        m_usePrescribedThreshold(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa FullPivHouseholderQR()
      */
    FullPivHouseholderQR(Index rows, Index cols)
      : m_qr(rows, cols),
        m_hCoeffs(std::min(rows,cols)),
        m_rows_transpositions(rows),
        m_cols_transpositions(cols),
        m_cols_permutation(cols),
        m_temp(std::min(rows,cols)),
        m_isInitialized(false),
        m_usePrescribedThreshold(false) {}

    FullPivHouseholderQR(const MatrixType& matrix)
      : m_qr(matrix.rows(), matrix.cols()),
        m_hCoeffs(std::min(matrix.rows(), matrix.cols())),
        m_rows_transpositions(matrix.rows()),
        m_cols_transpositions(matrix.cols()),
        m_cols_permutation(matrix.cols()),
        m_temp(std::min(matrix.rows(), matrix.cols())),
        m_isInitialized(false),
        m_usePrescribedThreshold(false)
    {
      compute(matrix);
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the QR decomposition, if any exists.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \returns a solution.
      *
      * \note The case where b is a matrix is not yet implemented. Also, this
      *       code is space inefficient.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      *
      * Example: \include FullPivHouseholderQR_solve.cpp
      * Output: \verbinclude FullPivHouseholderQR_solve.out
      */
    template<typename Rhs>
    inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
    }

    MatrixQType matrixQ(void) const;

    /** \returns a reference to the matrix where the Householder QR decomposition is stored
      */
    const MatrixType& matrixQR() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_qr;
    }

    FullPivHouseholderQR& compute(const MatrixType& matrix);

    const PermutationType& colsPermutation() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_cols_permutation;
    }

    const IntColVectorType& rowsTranspositions() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_rows_transpositions;
    }

    /** \returns the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      * One way to work around that is to use logAbsDeterminant() instead.
      *
      * \sa logAbsDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar absDeterminant() const;

    /** \returns the natural log of the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note This method is useful to work around the risk of overflow/underflow that's inherent
      * to determinant computation.
      *
      * \sa absDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar logAbsDeterminant() const;

    /** \returns the rank of the matrix of which *this is the QR decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index rank() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
      Index result = 0;
      for(Index i = 0; i < m_nonzero_pivots; ++i)
        result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
      return result;
    }

    /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index dimensionOfKernel() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return cols() - rank();
    }

    /** \returns true if the matrix of which *this is the QR decomposition represents an injective
      *          linear map, i.e. has trivial kernel; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInjective() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return rank() == cols();
    }

    /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
      *          linear map; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isSurjective() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return rank() == rows();
    }

    /** \returns true if the matrix of which *this is the QR decomposition is invertible.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInvertible() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return isInjective() && isSurjective();
    }

    /** \returns the inverse of the matrix of which *this is the QR decomposition.
      *
      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
      *       Use isInvertible() to first determine whether this matrix is invertible.
      */    inline const
    internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
    inverse() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
               (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
    }

    inline Index rows() const { return m_qr.rows(); }
    inline Index cols() const { return m_qr.cols(); }
    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }

    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
      * who need to determine when pivots are to be considered nonzero. This is not used for the
      * QR decomposition itself.
      *
      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
      * uses a formula to automatically determine a reasonable threshold.
      * Once you have called the present method setThreshold(const RealScalar&),
      * your value is used instead.
      *
      * \param threshold The new value to use as the threshold.
      *
      * A pivot will be considered nonzero if its absolute value is strictly greater than
      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
      * where maxpivot is the biggest pivot.
      *
      * If you want to come back to the default behavior, call setThreshold(Default_t)
      */
    FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
    {
      m_usePrescribedThreshold = true;
      m_prescribedThreshold = threshold;
      return *this;
    }

    /** Allows to come back to the default behavior, letting Eigen use its default formula for
      * determining the threshold.
      *
      * You should pass the special object Eigen::Default as parameter here.
      * \code qr.setThreshold(Eigen::Default); \endcode
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    FullPivHouseholderQR& setThreshold(Default_t)
    {
      m_usePrescribedThreshold = false;
      return *this;
    }

    /** Returns the threshold that will be used by certain methods such as rank().
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    RealScalar threshold() const
    {
      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
      return m_usePrescribedThreshold ? m_prescribedThreshold
      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
      // and turns out to be identical to Higham's formula used already in LDLt.
                                      : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
    }

    /** \returns the number of nonzero pivots in the QR decomposition.
      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
      * So that notion isn't really intrinsically interesting, but it is
      * still useful when implementing algorithms.
      *
      * \sa rank()
      */
    inline Index nonzeroPivots() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_nonzero_pivots;
    }

    /** \returns the absolute value of the biggest pivot, i.e. the biggest
      *          diagonal coefficient of U.
      */
    RealScalar maxPivot() const { return m_maxpivot; }

  protected:
    MatrixType m_qr;
    HCoeffsType m_hCoeffs;
    IntColVectorType m_rows_transpositions;
    IntRowVectorType m_cols_transpositions;
    PermutationType m_cols_permutation;
    RowVectorType m_temp;
    bool m_isInitialized, m_usePrescribedThreshold;
    RealScalar m_prescribedThreshold, m_maxpivot;
    Index m_nonzero_pivots;
    RealScalar m_precision;
    Index m_det_pq;
};

template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
{
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return internal::abs(m_qr.diagonal().prod());
}

template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return m_qr.diagonal().cwiseAbs().array().log().sum();
}

template<typename MatrixType>
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
  Index rows = matrix.rows();
  Index cols = matrix.cols();
  Index size = std::min(rows,cols);

  m_qr = matrix;
  m_hCoeffs.resize(size);

  m_temp.resize(cols);

  m_precision = NumTraits<Scalar>::epsilon() * size;

  m_rows_transpositions.resize(matrix.rows());
  m_cols_transpositions.resize(matrix.cols());
  Index number_of_transpositions = 0;

  RealScalar biggest(0);

  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
  m_maxpivot = RealScalar(0);

  for (Index k = 0; k < size; ++k)
  {
    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
    RealScalar biggest_in_corner;

    biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
                            .cwiseAbs()
                            .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
    row_of_biggest_in_corner += k;
    col_of_biggest_in_corner += k;
    if(k==0) biggest = biggest_in_corner;

    // if the corner is negligible, then we have less than full rank, and we can finish early
    if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
    {
      m_nonzero_pivots = k;
      for(Index i = k; i < size; i++)
      {
        m_rows_transpositions.coeffRef(i) = i;
        m_cols_transpositions.coeffRef(i) = i;
        m_hCoeffs.coeffRef(i) = Scalar(0);
      }
      break;
    }

    m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
    m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
    if(k != row_of_biggest_in_corner) {
      m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
      ++number_of_transpositions;
    }
    if(k != col_of_biggest_in_corner) {
      m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
      ++number_of_transpositions;
    }

    RealScalar beta;
    m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    m_qr.coeffRef(k,k) = beta;

    // remember the maximum absolute value of diagonal coefficients
    if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);

    m_qr.bottomRightCorner(rows-k, cols-k-1)
        .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
  }

  m_cols_permutation.setIdentity(cols);
  for(Index k = 0; k < size; ++k)
    m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));

  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
  m_isInitialized = true;

  return *this;
}

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
  : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
{
  EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    const Index rows = dec().rows(), cols = dec().cols();
    eigen_assert(rhs().rows() == rows);

    // FIXME introduce nonzeroPivots() and use it here. and more generally,
    // make the same improvements in this dec as in FullPivLU.
    if(dec().rank()==0)
    {
      dst.setZero();
      return;
    }

    typename Rhs::PlainObject c(rhs());

    Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
    for (Index k = 0; k < dec().rank(); ++k)
    {
      Index remainingSize = rows-k;
      c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
      c.bottomRightCorner(remainingSize, rhs().cols())
       .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
                                  dec().hCoeffs().coeff(k), &temp.coeffRef(0));
    }

    if(!dec().isSurjective())
    {
      // is c is in the image of R ?
      RealScalar biggest_in_upper_part_of_c = c.topRows(   dec().rank()     ).cwiseAbs().maxCoeff();
      RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
      // FIXME brain dead
      const RealScalar m_precision = NumTraits<Scalar>::epsilon() * std::min(rows,cols);
      // this internal:: prefix is needed by at least gcc 3.4 and ICC
      if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
        return;
    }
    dec().matrixQR()
       .topLeftCorner(dec().rank(), dec().rank())
       .template triangularView<Upper>()
       .solveInPlace(c.topRows(dec().rank()));

    for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
    for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
  }
};

} // end namespace internal

/** \returns the matrix Q */
template<typename MatrixType>
typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const
{
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  // compute the product H'_0 H'_1 ... H'_n-1,
  // where H_k is the k-th Householder transformation I - h_k v_k v_k'
  // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
  Index rows = m_qr.rows();
  Index cols = m_qr.cols();
  Index size = std::min(rows,cols);
  MatrixQType res = MatrixQType::Identity(rows, rows);
  Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
  for (Index k = size-1; k >= 0; k--)
  {
    res.block(k, k, rows-k, rows-k)
       .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
    res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
  }
  return res;
}

/** \return the full-pivoting Householder QR decomposition of \c *this.
  *
  * \sa class FullPivHouseholderQR
  */
template<typename Derived>
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivHouseholderQr() const
{
  return FullPivHouseholderQR<PlainObject>(eval());
}

#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H