LDLT.h 15.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H

namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
}

/** \ingroup cholesky_Module
  *
  * \class LDLT
  *
  * \brief Robust Cholesky decomposition of a matrix with pivoting
  *
  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
  *
  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
  * is lower triangular with a unit diagonal and D is a diagonal matrix.
  *
  * The decomposition uses pivoting to ensure stability, so that L will have
  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
  * on D also stabilizes the computation.
  *
  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
	* decomposition to determine whether a system of equations has a solution.
  *
  * \sa MatrixBase::ldlt(), class LLT
  */
 /* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  */
template<typename _MatrixType, int _UpLo> class LDLT
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
      UpLo = _UpLo
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;

    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;

    typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LDLT::compute(const MatrixType&).
      */
    LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa LDLT()
      */
    LDLT(Index size)
      : m_matrix(size, size),
        m_transpositions(size),
        m_temporary(size),
        m_isInitialized(false)
    {}

    LDLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_transpositions(matrix.rows()),
        m_temporary(matrix.rows()),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    /** \returns the permutation matrix P as a transposition sequence.
      */
    inline const TranspositionType& transpositionsP() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_transpositions;
    }

    /** \returns the coefficients of the diagonal matrix D */
    inline Diagonal<const MatrixType> vectorD(void) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix.diagonal();
    }

    /** \returns true if the matrix is positive (semidefinite) */
    inline bool isPositive(void) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == 1;
    }
    
    #ifdef EIGEN2_SUPPORT
    inline bool isPositiveDefinite() const
    {
      return isPositive();
    }
    #endif

    /** \returns true if the matrix is negative (semidefinite) */
    inline bool isNegative(void) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == -1;
    }

    /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \note_about_checking_solutions
      *
      * \sa solveInPlace(), MatrixBase::ldlt()
      */
    template<typename Rhs>
    inline const internal::solve_retval<LDLT, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      eigen_assert(m_matrix.rows()==b.rows()
                && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
    }

    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived, typename ResultType>
    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
    {
      *result = this->solve(b);
      return true;
    }
    #endif

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &bAndX) const;

    LDLT& compute(const MatrixType& matrix);

    /** \returns the internal LDLT decomposition matrix
      *
      * TODO: document the storage layout
      */
    inline const MatrixType& matrixLDLT() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix;
    }

    MatrixType reconstructedMatrix() const;

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

  protected:

    /** \internal
      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
      * The strict upper part is used during the decomposition, the strict lower
      * part correspond to the coefficients of L (its diagonal is equal to 1 and
      * is not stored), and the diagonal entries correspond to D.
      */
    MatrixType m_matrix;
    TranspositionType m_transpositions;
    TmpMatrixType m_temporary;
    int m_sign;
    bool m_isInitialized;
};

namespace internal {

template<int UpLo> struct ldlt_inplace;

template<> struct ldlt_inplace<Lower>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    eigen_assert(mat.rows()==mat.cols());
    const Index size = mat.rows();

    if (size <= 1)
    {
      transpositions.setIdentity();
      if(sign)
        *sign = real(mat.coeff(0,0))>0 ? 1:-1;
      return true;
    }

    RealScalar cutoff = 0, biggest_in_corner;

    for (Index k = 0; k < size; ++k)
    {
      // Find largest diagonal element
      Index index_of_biggest_in_corner;
      biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
      index_of_biggest_in_corner += k;

      if(k == 0)
      {
        // The biggest overall is the point of reference to which further diagonals
        // are compared; if any diagonal is negligible compared
        // to the largest overall, the algorithm bails.
        cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);

        if(sign)
          *sign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
      }

      // Finish early if the matrix is not full rank.
      if(biggest_in_corner < cutoff)
      {
        for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
        break;
      }

      transpositions.coeffRef(k) = index_of_biggest_in_corner;
      if(k != index_of_biggest_in_corner)
      {
        // apply the transposition while taking care to consider only
        // the lower triangular part
        Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
        mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
        mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
        std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
        for(int i=k+1;i<index_of_biggest_in_corner;++i)
        {
          Scalar tmp = mat.coeffRef(i,k);
          mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i));
          mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp);
        }
        if(NumTraits<Scalar>::IsComplex)
          mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k));
      }

      // partition the matrix:
      //       A00 |  -  |  -
      // lu  = A10 | A11 |  -
      //       A20 | A21 | A22
      Index rs = size - k - 1;
      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);

      if(k>0)
      {
        temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
        mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
        if(rs>0)
          A21.noalias() -= A20 * temp.head(k);
      }
      if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
        A21 /= mat.coeffRef(k,k);
    }

    return true;
  }
};

template<> struct ldlt_inplace<Upper>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
  {
    Transpose<MatrixType> matt(mat);
    return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
  }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
  typedef TriangularView<MatrixType, UnitLower> MatrixL;
  typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
  inline static MatrixL getL(const MatrixType& m) { return m; }
  inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
  typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
  typedef TriangularView<MatrixType, UnitUpper> MatrixU;
  inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
  inline static MatrixU getU(const MatrixType& m) { return m; }
};

} // end namespace internal

/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
  */
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
  eigen_assert(a.rows()==a.cols());
  const Index size = a.rows();

  m_matrix = a;

  m_transpositions.resize(size);
  m_isInitialized = false;
  m_temporary.resize(size);

  internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);

  m_isInitialized = true;
  return *this;
}

namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
  : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
  typedef LDLT<_MatrixType,_UpLo> LDLTType;
  EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
    // dst = P b
    dst = dec().transpositionsP() * rhs();

    // dst = L^-1 (P b)
    dec().matrixL().solveInPlace(dst);

    // dst = D^-1 (L^-1 P b)
    dst = dec().vectorD().asDiagonal().inverse() * dst;

    // dst = L^-T (D^-1 L^-1 P b)
    dec().matrixU().solveInPlace(dst);

    // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
    dst = dec().transpositionsP().transpose() * dst;
  }
};
}

/** \internal use x = ldlt_object.solve(x);
  *
  * This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LDLT::solve(), MatrixBase::ldlt()
  */
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  const Index size = m_matrix.rows();
  eigen_assert(size == bAndX.rows());

  bAndX = this->solve(bAndX);

  return true;
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: P^T L D L^* P.
 * This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  const Index size = m_matrix.rows();
  MatrixType res(size,size);

  // P
  res.setIdentity();
  res = transpositionsP() * res;
  // L^* P
  res = matrixU() * res;
  // D(L^*P)
  res = vectorD().asDiagonal() * res;
  // L(DL^*P)
  res = matrixL() * res;
  // P^T (LDL^*P)
  res = transpositionsP().transpose() * res;

  return res;
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  */
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
  return LDLT<PlainObject,UpLo>(m_matrix);
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  */
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
  return LDLT<PlainObject>(derived());
}

#endif // EIGEN_LDLT_H