LinearGenerator.cpp 15.1 KB
Newer Older
1 2
#include "LinearGenerator.h"

3
#include "JsonHelper.h"
4 5 6
#include "QGCLoggingCategory.h"

#define CLIPPER_SCALE 1000000
7 8 9
#include "geometry/MeasurementArea.h"
#include "geometry/SafeArea.h"
#include "geometry/clipper/clipper.hpp"
10

11 12
#include "RoutingThread.h"
#include "nemo_interface/SnakeTile.h"
13 14

namespace routing {
15 16 17 18 19 20
const QString generatorType = "LinearGenerator";

GeneratorBase *creator(QObject *parent) { return new LinearGenerator(parent); }

REGISTER_GENERATOR(generatorType, creator)
QGC_LOGGING_CATEGORY(LinearGeneratorLog, "LinearGeneratorLog")
21 22 23 24 25 26 27

bool linearTransects(const snake::FPolygon &polygon,
                     const std::vector<snake::FPolygon> &tiles,
                     snake::Length distance, snake::Angle angle,
                     snake::Length minLength, snake::Transects &transects);

const char *LinearGenerator::settingsGroup = "LinearGenerator";
28 29 30
const char *distanceKey = "TransectDistance";
const char *alphaKey = "Alpha";
const char *minLengthKey = "MinLength";
31 32 33 34 35 36 37 38

LinearGenerator::LinearGenerator(QObject *parent)
    : LinearGenerator(nullptr, parent) {}

LinearGenerator::LinearGenerator(GeneratorBase::Data d, QObject *parent)
    : GeneratorBase(d, parent),
      _metaDataMap(FactMetaData::createMapFromJsonFile(
          QStringLiteral(":/json/LinearGenerator.SettingsGroup.json"), this)),
39 40
      _distance(settingsGroup, _metaDataMap[distanceKey]),
      _alpha(settingsGroup, _metaDataMap[alphaKey]),
41
      _minLength(settingsGroup, _metaDataMap[minLengthKey]),
42 43 44 45 46 47 48 49 50
      _measurementArea(nullptr), _safeArea(nullptr) {
  connect(this->distance(), &Fact::rawValueChanged, this,
          &GeneratorBase::generatorChanged);
  connect(this->alpha(), &Fact::rawValueChanged, this,
          &GeneratorBase::generatorChanged);
  connect(this->minLength(), &Fact::rawValueChanged, this,
          &GeneratorBase::generatorChanged);
  connect(this->_d, &AreaData::areaListChanged, this,
          &LinearGenerator::onAreaListChanged);
51
  setName(tr("Linear Generator"));
52 53 54 55 56 57
}

QString LinearGenerator::editorQml() {
  return QStringLiteral("LinearGeneratorEditor.qml");
}

58 59
QString LinearGenerator::mapVisualQml() { return QStringLiteral(""); }

60 61
QString LinearGenerator::abbreviation() { return QStringLiteral("L. Gen."); }

62 63
QString LinearGenerator::type() { return generatorType; }

64 65
bool LinearGenerator::get(Generator &generator) {
  if (_d) {
66
    if (this->_d->isCorrect()) {
67 68 69 70 71 72 73
      // Prepare data.
      auto origin = this->_d->origin();
      origin.setAltitude(0);
      if (!origin.isValid()) {
        qCDebug(LinearGeneratorLog) << "get(): origin invalid." << origin;
      }

74 75 76 77 78 79 80
      auto measurementArea =
          getGeoArea<const MeasurementArea *>(*this->_d->areaList());
      if (measurementArea == nullptr) {
        qCDebug(LinearGeneratorLog) << "get(): measurement area == nullptr";
        return false;
      }
      auto geoPolygon = measurementArea->coordinateList();
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
      for (auto &v : geoPolygon) {
        if (v.isValid()) {
          v.setAltitude(0);
        } else {
          qCDebug(LinearGeneratorLog) << "get(): measurement area invalid.";
          for (const auto &w : geoPolygon) {
            qCDebug(LinearGeneratorLog) << w;
          }
          return false;
        }
      }
      auto pPolygon = std::make_shared<snake::FPolygon>();
      snake::areaToEnu(origin, geoPolygon, *pPolygon);

      // Progress and tiles.
96 97
      const auto &progress = measurementArea->progress();
      const auto *tiles = measurementArea->tiles();
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      auto pTiles = std::make_shared<std::vector<snake::FPolygon>>();
      if (progress.size() == tiles->count()) {
        for (int i = 0; i < tiles->count(); ++i) {
          if (progress[i] == 100) {
            const QObject *obj = (*tiles)[int(i)];
            const auto *tile = qobject_cast<const SnakeTile *>(obj);

            if (tile != nullptr) {
              snake::FPolygon tileENU;
              snake::areaToEnu(origin, tile->coordinateList(), tileENU);
              pTiles->push_back(std::move(tileENU));
            } else {
              qCDebug(LinearGeneratorLog) << "get(): tile == nullptr";
              return false;
            }
          }
        }
      } else {
        qCDebug(LinearGeneratorLog)
            << "get(): progress.size() != tiles->count().";
        return false;
      }

121 122 123 124 125 126
      auto serviceArea = getGeoArea<const SafeArea *>(*this->_d->areaList());
      if (serviceArea == nullptr) {
        qCDebug(LinearGeneratorLog) << "get(): service area == nullptr";
        return false;
      }
      auto geoDepot = serviceArea->depot();
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
      if (!geoDepot.isValid()) {
        qCDebug(LinearGeneratorLog) << "get(): depot invalid." << geoDepot;
        return false;
      }
      snake::FPoint depot;
      snake::toENU(origin, geoDepot, depot);

      // Fetch transect parameter.
      auto distance =
          snake::Length(this->_distance.rawValue().toDouble() * bu::si::meter);
      auto minLength =
          snake::Length(this->_minLength.rawValue().toDouble() * bu::si::meter);
      auto alpha =
          snake::Angle(this->_alpha.rawValue().toDouble() * bu::degree::degree);
      generator = [depot, pPolygon, pTiles, distance, alpha,
                   minLength](snake::Transects &transects) -> bool {
        bool value = linearTransects(*pPolygon, *pTiles, distance, alpha,
                                     minLength, transects);
        transects.insert(transects.begin(), snake::FLineString{depot});
        return value;
      };
      return true;
    } else {
      qCDebug(LinearGeneratorLog) << "get(): data invalid.";
      return false;
    }
  } else {
    qCDebug(LinearGeneratorLog) << "get(): data member not set.";
    return false;
  }
}

159
bool LinearGenerator::save(QJsonObject &obj) const {
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  QJsonObject temp;

  bool ok = false;
  auto variant = _distance.rawValue();
  auto val = variant.toDouble(&ok);
  if (!ok) {
    qCDebug(LinearGeneratorLog)
        << "save(): not able to save distance. Not a double: "
        << variant.typeName();
    return false;
  } else {
    temp[distanceKey] = val;
  }

  variant = _alpha.rawValue();
  val = variant.toDouble(&ok);
  if (!ok) {
    qCDebug(LinearGeneratorLog)
        << "save(): not able to save alpha. Not a double: "
        << variant.typeName();
    return false;
  } else {
    temp[alphaKey] = val;
  }

  variant = _minLength.rawValue();
  val = variant.toDouble(&ok);
  if (!ok) {
    qCDebug(LinearGeneratorLog)
        << "save(): not able to save minLength. Not a double: "
        << variant.typeName();
    return false;
  } else {
193
    temp[minLengthKey] = val;
194 195 196
  }

  obj = std::move(temp);
197 198 199
  return true;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
bool LinearGenerator::load(const QJsonObject &obj, QString &errorString) {
  bool returnValue = true;

  // load distance
  {
    QString e;
    QList<JsonHelper::KeyValidateInfo> keyInfo = {
        {distanceKey, QJsonValue::Double, true},
    };
    if (JsonHelper::validateKeys(obj, keyInfo, e)) {
      _distance.setRawValue(obj[distanceKey]);
    } else {
      returnValue = false;
      errorString.append(e);
      errorString.append("\n");
    }
  }

  // load alpha
  {
    QString e;
    QList<JsonHelper::KeyValidateInfo> keyInfo = {
        {alphaKey, QJsonValue::Double, true},
    };
    if (JsonHelper::validateKeys(obj, keyInfo, e)) {
      _alpha.setRawValue(obj[alphaKey]);
    } else {
      returnValue = false;
      errorString.append(e);
      errorString.append("\n");
    }
  }

  // load distance
  {
    QString e;
    QList<JsonHelper::KeyValidateInfo> keyInfo = {
        {minLengthKey, QJsonValue::Double, true},
    };
    if (JsonHelper::validateKeys(obj, keyInfo, e)) {
      _minLength.setRawValue(obj[minLengthKey]);
    } else {
      returnValue = false;
      errorString.append(e);
      errorString.append("\n");
    }
  }

  return returnValue;
249 250
}

251 252 253 254 255 256
Fact *LinearGenerator::distance() { return &_distance; }

Fact *LinearGenerator::alpha() { return &_alpha; }

Fact *LinearGenerator::minLength() { return &_minLength; }

257 258 259
void LinearGenerator::onAreaListChanged() {
  auto *measurementArea = getGeoArea<MeasurementArea *>(*this->_d->areaList());
  setMeasurementArea(measurementArea);
260 261
}

262 263
void LinearGenerator::setMeasurementArea(MeasurementArea *area) {
  if (_measurementArea != area) {
264

265 266
    if (_measurementArea != nullptr) {
      disconnect(_measurementArea, &MeasurementArea::progressChanged, this,
267
                 &GeneratorBase::generatorChanged);
268
      disconnect(_measurementArea, &MeasurementArea::tilesChanged, this,
269
                 &GeneratorBase::generatorChanged);
270
      disconnect(_measurementArea, &MeasurementArea::pathChanged, this,
271 272
                 &GeneratorBase::generatorChanged);
    }
273 274 275 276 277 278 279 280 281 282 283 284 285

    _measurementArea = area;

    if (_measurementArea != nullptr) {
      connect(_measurementArea, &MeasurementArea::progressChanged, this,
              &GeneratorBase::generatorChanged);
      connect(_measurementArea, &MeasurementArea::tilesChanged, this,
              &GeneratorBase::generatorChanged);
      connect(_measurementArea, &MeasurementArea::pathChanged, this,
              &GeneratorBase::generatorChanged);
    }

    emit generatorChanged();
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  }
}

bool linearTransects(const snake::FPolygon &polygon,
                     const std::vector<snake::FPolygon> &tiles,
                     snake::Length distance, snake::Angle angle,
                     snake::Length minLength, snake::Transects &transects) {
  namespace tr = bg::strategy::transform;
  auto s1 = std::chrono::high_resolution_clock::now();

  // Check preconitions
  if (polygon.outer().size() >= 3) {
    // Convert to ENU system.
    std::string error;
    // Check validity.
    if (!bg::is_valid(polygon, error)) {
      std::stringstream ss;
      ss << bg::wkt(polygon);

      qCDebug(LinearGeneratorLog) << "linearTransects(): "
                                     "invalid polygon. "
                                  << error.c_str() << ss.str().c_str();
    } else {
      tr::rotate_transformer<bg::degree, double, 2, 2> rotate(angle.value() *
                                                              180 / M_PI);
      // Rotate polygon by angle and calculate bounding box.
      snake::FPolygon polygonENURotated;
      bg::transform(polygon.outer(), polygonENURotated.outer(), rotate);
      snake::FBox box;
      boost::geometry::envelope(polygonENURotated, box);
      double x0 = box.min_corner().get<0>();
      double y0 = box.min_corner().get<1>();
      double x1 = box.max_corner().get<0>();
      double y1 = box.max_corner().get<1>();

      // Generate transects and convert them to clipper path.
      size_t num_t = ceil((y1 - y0) / distance.value()); // number of transects
      vector<ClipperLib::Path> transectsClipper;
      transectsClipper.reserve(num_t);
      for (size_t i = 0; i < num_t; ++i) {
        // calculate transect
        snake::FPoint v1{x0, y0 + i * distance.value()};
        snake::FPoint v2{x1, y0 + i * distance.value()};
        snake::FLineString transect;
        transect.push_back(v1);
        transect.push_back(v2);
        // transform back
        snake::FLineString temp_transect;
        tr::rotate_transformer<bg::degree, double, 2, 2> rotate_back(
            -angle.value() * 180 / M_PI);
        bg::transform(transect, temp_transect, rotate_back);
        // to clipper
        ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[0].get<1>() * CLIPPER_SCALE)};
        ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<0>() * CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(
                                    temp_transect[1].get<1>() * CLIPPER_SCALE)};
        ClipperLib::Path path{c1, c2};
        transectsClipper.push_back(path);
      }

      if (transectsClipper.size() == 0) {
        std::stringstream ss;
        ss << "Not able to generate transects. Parameter: distance = "
           << distance << std::endl;
        qCDebug(LinearGeneratorLog)
            << "linearTransects(): " << ss.str().c_str();
        return false;
      }

      // Convert measurement area to clipper path.
      snake::FPolygon shrinked;
      snake::offsetPolygon(polygon, shrinked, -0.2);
      auto &outer = shrinked.outer();
      ClipperLib::Path polygonClipper;
      for (auto vertex : outer) {
        polygonClipper.push_back(ClipperLib::IntPoint{
            static_cast<ClipperLib::cInt>(vertex.get<0>() * CLIPPER_SCALE),
            static_cast<ClipperLib::cInt>(vertex.get<1>() * CLIPPER_SCALE)});
      }

      // Perform clipping.
      // Clip transects to measurement area.
      ClipperLib::Clipper clipper;
      clipper.AddPath(polygonClipper, ClipperLib::ptClip, true);
      clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
      ClipperLib::PolyTree clippedTransecs;
      clipper.Execute(ClipperLib::ctIntersection, clippedTransecs,
                      ClipperLib::pftNonZero, ClipperLib::pftNonZero);

      // Subtract holes.
      if (tiles.size() > 0) {
        vector<ClipperLib::Path> processedTiles;
        for (const auto &tile : tiles) {
          ClipperLib::Path path;
          for (const auto &v : tile.outer()) {
            path.push_back(ClipperLib::IntPoint{
                static_cast<ClipperLib::cInt>(v.get<0>() * CLIPPER_SCALE),
                static_cast<ClipperLib::cInt>(v.get<1>() * CLIPPER_SCALE)});
          }
          processedTiles.push_back(std::move(path));
        }

        clipper.Clear();
        for (const auto &child : clippedTransecs.Childs) {
          clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
        }
        clipper.AddPaths(processedTiles, ClipperLib::ptClip, true);
        clippedTransecs.Clear();
        clipper.Execute(ClipperLib::ctDifference, clippedTransecs,
                        ClipperLib::pftNonZero, ClipperLib::pftNonZero);
      }

      // Extract transects from  PolyTree and convert them to BoostLineString
      for (const auto &child : clippedTransecs.Childs) {
        const auto &clipperTransect = child->Contour;
        snake::FPoint v1{
            static_cast<double>(clipperTransect[0].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[0].Y) / CLIPPER_SCALE};
        snake::FPoint v2{
            static_cast<double>(clipperTransect[1].X) / CLIPPER_SCALE,
            static_cast<double>(clipperTransect[1].Y) / CLIPPER_SCALE};

        snake::FLineString transect{v1, v2};
        if (bg::length(transect) >= minLength.value()) {
          transects.push_back(transect);
        }
      }

      if (transects.size() == 0) {
        std::stringstream ss;
        ss << "Not able to  generatetransects. Parameter: minLength = "
           << minLength << std::endl;
        qCDebug(LinearGeneratorLog)
            << "linearTransects(): " << ss.str().c_str();
        return false;
      }

      qCDebug(LinearGeneratorLog)
          << "linearTransects(): time: "
          << std::chrono::duration_cast<std::chrono::milliseconds>(
                 std::chrono::high_resolution_clock::now() - s1)
                 .count()
          << " ms";
      return true;
    }
  }
  return false;
}
} // namespace routing