snake.cpp 21 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
#include <iostream>

#include "snake.h"
#include <clipper.hpp>
#define CLIPPER_SCALE 10000

using namespace snake_geometry;
using namespace std;

namespace bg = boost::geometry;
namespace trans = bg::strategy::transform;

namespace snake {

Scenario::Scenario() :
    _mAreaBoundingBox(min_bbox_rt{0, 0, 0, BoostPolygon{}})
{

}

bool Scenario::addArea(Area &area)
    {
        if (area.geoPolygon.size() < 3){
            errorString = "Area has less than three vertices.";
            return false;
        }
        if (area.type == MeasurementArea)
            return Scenario::_setMeasurementArea(area);
        else if (area.type == ServiceArea)
            return Scenario::_setServiceArea(area);
        else if (area.type == Corridor)
            return Scenario::_setCorridor(area);
        return false;
}

bool Scenario::defined(double tileWidth, double tileHeight, double minTileArea)
{
    if (!_areas2enu())
        return false;
    if (!_calculateBoundingBox())
        return false;
    if (!_calculateTiles(tileWidth, tileHeight, minTileArea))
        return false;
    if (!_calculateJoinedArea())
        return false;

    return true;
}

bool Scenario::_areas2enu()
{
    if (_measurementArea.geoPolygon.size() > 0){
        _measurementAreaENU.clear();
        for(auto vertex : _measurementArea.geoPolygon) {
                Point3D ENUVertex;
                toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _measurementArea.altitude}, ENUVertex);
                _measurementAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
        }
        bg::correct(_measurementAreaENU);

        _serviceAreaENU.clear();
        if (_serviceArea.geoPolygon.size() > 0){
            for(auto vertex : _serviceArea.geoPolygon) {
                    Point3D ENUVertex;
                    toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _serviceArea.altitude}, ENUVertex);
                    _serviceAreaENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
            }
        } else{
            errorString = "Service area has no vertices.";
            return false;
        }
        bg::correct(_serviceAreaENU);
        polygonCenter(_serviceAreaENU, _homePositionENU);

        _corridorENU.clear();
        if (_corridor.geoPolygon.size() > 0){
            for(auto vertex : _corridor.geoPolygon) {
                    Point3D ENUVertex;
                    toENU(_geoOrigin, Point3D{vertex[0], vertex[1], _corridor.altitude}, ENUVertex);
                    _corridorENU.outer().push_back(BoostPoint{ENUVertex[0], ENUVertex[1]});
            }
        }
        bg::correct(_corridorENU);

        return true;
    }

    errorString = "Measurement area has no vertices.";
    return false;
}

bool Scenario::_setMeasurementArea(Area &area)
{
    if (area.geoPolygon.size() <= 0)
        return false;
    GeoPoint2D origin2D = area.geoPolygon[0];
    _geoOrigin = GeoPoint3D{origin2D[0], origin2D[1], 0};
    _measurementArea = area;
    _measurementAreaENU.clear();
    _serviceAreaENU.clear();
    _corridorENU.clear();
    return true;

}

bool Scenario::_setServiceArea(Area &area)
{
    if (area.geoPolygon.size() <= 0)
        return false;
    _serviceArea = area;
    _serviceAreaENU.clear();
    return true;
}

bool Scenario::_setCorridor(Area &area)
{
    if (area.geoPolygon.size() <= 0)
        return false;
    _corridor = area;
    _corridorENU.clear();
    return true;
}

bool Scenario::_calculateBoundingBox()
{
    minimalBoundingBox(_measurementAreaENU, _mAreaBoundingBox);
    return true;
}


/**
 * Devides the (measurement area) bounding  box into tiles and clips it to the measurement area.
 *
 * Devides the (measurement area) bounding  box into tiles of width \p tileWidth and height \p tileHeight.
 * Clips the resulting tiles to the measurement area. Tiles are rejected, if their area is smaller than \p minTileArea.
 * The function assumes that \a _measurementAreaENU and \a _mAreaBoundingBox have correct values. \see \ref Scenario::_areas2enu() and \ref
 * Scenario::_calculateBoundingBox().
 *
 * @param tileWidth The width (>0) of a tile.
 * @param tileHeight The heigth (>0) of a tile.
 * @param minTileArea The minimal area (>0) of a tile.
 *
 * @return Returns true if successful.
 */
bool Scenario::_calculateTiles(double tileWidth, double tileHeight, double minTileArea)
{
    _tilesENU.clear();
    _tileCenterPointsENU.clear();

    if (tileWidth <= 0 || tileHeight <= 0 || minTileArea <= 0) {
        errorString = "Parameters tileWidth, tileHeight, minTileArea must be positive.";
        return false;
    }

    double bbox_width = _mAreaBoundingBox.width;
    double bbox_height = _mAreaBoundingBox.height;

    BoostPoint origin = _mAreaBoundingBox.corners.outer()[0];

    //cout << "Origin: " << origin[0] << " " << origin[1] << endl;
    // Transform _measurementAreaENU polygon to bounding box coordinate system.
    trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate(_mAreaBoundingBox.angle*180/M_PI);
    trans::translate_transformer<double, 2, 2> translate(-origin.get<0>(), -origin.get<1>());
    BoostPolygon translated_polygon;
    BoostPolygon rotated_polygon;
    boost::geometry::transform(_measurementAreaENU, translated_polygon, translate);
    boost::geometry::transform(translated_polygon, rotated_polygon, rotate);
    bg::correct(rotated_polygon);

    //cout << bg::wkt<BoostPolygon2D>(rotated_polygon) << endl;

    size_t i_max = ceil(bbox_width/tileWidth);
    size_t j_max = ceil(bbox_height/tileHeight);

    if (i_max < 1 || j_max < 1) {
        errorString = "tileWidth or tileHeight to small.";
        return false;
    }


    trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-_mAreaBoundingBox.angle*180/M_PI);
    trans::translate_transformer<double, 2, 2> translate_back(origin.get<0>(), origin.get<1>());
    for (size_t i = 0; i < i_max; ++i){
        double x_min = tileWidth*i;
        double x_max = x_min + tileWidth;
        for (size_t j = 0; j < j_max; ++j){
            double y_min = tileHeight*j;
            double y_max = y_min + tileHeight;

            BoostPolygon tile_unclipped;
            tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});
            tile_unclipped.outer().push_back(BoostPoint{x_min, y_max});
            tile_unclipped.outer().push_back(BoostPoint{x_max, y_max});
            tile_unclipped.outer().push_back(BoostPoint{x_max, y_min});
            tile_unclipped.outer().push_back(BoostPoint{x_min, y_min});


            std::deque<BoostPolygon> boost_tiles;
            if (!boost::geometry::intersection(tile_unclipped, rotated_polygon, boost_tiles))
                continue;

           for (BoostPolygon t : boost_tiles)
           {
                if (bg::area(t) > minTileArea){
                    // Transform boost_tile to world coordinate system.
                    BoostPolygon rotated_tile;
                    BoostPolygon translated_tile;
                    boost::geometry::transform(t, rotated_tile, rotate_back);
                    boost::geometry::transform(rotated_tile, translated_tile, translate_back);

                    // Store tile and calculate center point.
                    _tilesENU.push_back(translated_tile);
                    BoostPoint tile_center;
                    polygonCenter(translated_tile, tile_center);
                    _tileCenterPointsENU.push_back(tile_center);
                }
           }
        }
    }

    if (_tilesENU.size() < 1){
        errorString = "No tiles calculated. Is the minTileArea parameter large enough?";
        return false;
    }

    return true;
}

bool Scenario::_calculateJoinedArea()
{
    _joinedAreaENU.clear();
    // Measurement area and service area overlapping?
    bool overlapingSerMeas = bg::intersects(_measurementAreaENU, _serviceAreaENU) ? true : false;
    bool corridorValid = _corridorENU.outer().size() > 0 ? true : false;


    // Check if corridor is connecting measurement area and service area.
    bool corridor_is_connection = false;
    if (corridorValid) {
        // Corridor overlaping with measurement area?
        if ( bg::intersects(_corridorENU, _measurementAreaENU) ) {
            // Corridor overlaping with service area?
            if ( bg::intersects(_corridorENU, _serviceAreaENU) )
                corridor_is_connection = true;
        }
    }

    // Are areas joinable?
    std::deque<BoostPolygon> sol;
    BoostPolygon partialArea = _measurementAreaENU;
    if (overlapingSerMeas){
        if(corridor_is_connection){
            bg::union_(partialArea, _corridorENU, sol);
        }
    } else if (corridor_is_connection){
        bg::union_(partialArea, _corridorENU, sol);
    } else {
        errorString = "Areas are not overlapping";
        return false;
    }

    if (sol.size() > 0) {
        partialArea = sol[0];
        sol.clear();
    }

    // Join areas.
    bg::union_(partialArea, _serviceAreaENU, sol);

    if (sol.size() > 0) {
        _joinedAreaENU = sol[0];
    } else {
        return false;
    }

    return true;
}

FlightPlan::FlightPlan()
{

}

bool FlightPlan::generate(double lineDistance, double minTransectLength)
{
    _waypointsENU.clear();    

#ifndef NDEBUG
    _PathVertices.clear();
#endif
    auto start = std::chrono::high_resolution_clock::now();
    if (!_generateTransects(lineDistance, minTransectLength))
        return false;
    auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
    cout << endl;
   cout << "Execution time _generateTransects(): " << delta.count() << " ms" << endl;

    //=======================================
    // Route Transects using Google or-tools.
    //=======================================
    // Offset joined area.
    const BoostPolygon &jArea = _scenario.getJoineAreaENU();
    BoostPolygon jAreaOffset;
    offsetPolygon(jArea, jAreaOffset, detail::offsetConstant);

    // Create vertex list;
    BoostLineString vertices;
    size_t n0 = _transects.size()*2+1;
    vertices.reserve(n0);
    for (auto lstring : _transects){
        for (auto vertex : lstring){
            vertices.push_back(vertex);
        }
    }
    vertices.push_back(_scenario.getHomePositonENU());

    for (long i=0; i<long(jArea.outer().size())-1; ++i) {
        vertices.push_back(jArea.outer()[i]);
    }
    for (auto ring : jArea.inners()) {
        for (auto vertex : ring)
            vertices.push_back(vertex);
    }
    size_t n1 = vertices.size();
    // Generate routing model.
    RoutingDataModel_t dataModel;
    Matrix<double> connectionGraph(n1, n1);

    start = std::chrono::high_resolution_clock::now();
    _generateRoutingModel(vertices, jAreaOffset, n0, dataModel, connectionGraph);
    delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
    cout << "Execution time _generateRoutingModel(): " << delta.count() << " ms" << endl;

    // Create Routing Index Manager.
    RoutingIndexManager manager(dataModel.distanceMatrix.getN(), dataModel.numVehicles,
                                dataModel.depot);
    // Create Routing Model.
    RoutingModel routing(manager);

    // Create and register a transit callback.
    const int transit_callback_index = routing.RegisterTransitCallback(
        [&dataModel, &manager](int64 from_index, int64 to_index) -> int64 {
          // Convert from routing variable Index to distance matrix NodeIndex.
          auto from_node = manager.IndexToNode(from_index).value();
          auto to_node = manager.IndexToNode(to_index).value();
          return dataModel.distanceMatrix.get(from_node, to_node);
        });


    // Define Constraints.
    size_t n = _transects.size()*2;
    Solver *solver = routing.solver();
    for (size_t i=0; i<n; i=i+2){
//        auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
//        auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
//        auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
//        auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
//        auto c = solver->MakeNonEquality(cond0, cond1);
//        solver->AddConstraint(c);

        // alternative
        auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
        auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i+1));
        auto cond0 = routing.NextVar(idx0)->IsEqual(idx1);
        auto cond1 = routing.NextVar(idx1)->IsEqual(idx0);
        vector<IntVar*> conds{cond0, cond1};
        auto c = solver->MakeAllDifferent(conds);
        solver->MakeRejectFilter();
        solver->AddConstraint(c);
    }

    // Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);


    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
    searchParameters.set_first_solution_strategy(
        FirstSolutionStrategy::PATH_CHEAPEST_ARC);
    google::protobuf::Duration *tMax = new google::protobuf::Duration(); // seconds
    tMax->set_seconds(10);
    searchParameters.set_allocated_time_limit(tMax);

    // Solve the problem.
    start = std::chrono::high_resolution_clock::now();
    const Assignment* solution = routing.SolveWithParameters(searchParameters);
    delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start);
    cout << "Execution time routing.SolveWithParameters(): " << delta.count() << " ms" << endl;

    if (!solution || solution->Size() <= 1){
        errorString = "Not able to solve the routing problem.";
        return false;
    }

    // Extract waypoints from solution.
    long index = routing.Start(0);
    std::vector<size_t> route;
    route.push_back(manager.IndexToNode(index).value());
    while (!routing.IsEnd(index)){
        index = solution->Value(routing.NextVar(index));
        route.push_back(manager.IndexToNode(index).value());
    }

    // Connect transects
#ifndef NDEBUG
    _PathVertices = vertices;
#endif

    {
    _waypointsENU.push_back(vertices[route[0]]);
    vector<size_t> pathIdx;
    for (long i=0; i<long(route.size())-1; ++i){
        size_t idx0 = route[i];
        size_t idx1 = route[i+1];
        pathIdx.clear();
        shortestPathFromGraph(connectionGraph, idx0, idx1, pathIdx);
        for (size_t j=1; j<pathIdx.size(); ++j)
            _waypointsENU.push_back(vertices[pathIdx[j]]);
    }
    }

    return true;
}

bool FlightPlan::_generateTransects(double lineDistance, double minTransectLength)
{
    _transects.clear();
    if (_scenario.getTilesENU().size() != _progress.size()){
        errorString = "Number of tiles is not equal to progress array length";
        return false;
    }

    // Calculate processed tiles (_progress[i] == 100) and subtract them from measurement area.
    size_t num_tiles = _progress.size();
    vector<BoostPolygon> processedTiles;
    {
        const auto &tiles = _scenario.getTilesENU();
        for (size_t i=0; i<num_tiles; ++i) {
            if (_progress[i] == 100){
                processedTiles.push_back(tiles[i]);
            }
        }

        if (processedTiles.size() == num_tiles)
            return true;
    }

    // Convert measurement area and tiles to clipper path.
    ClipperLib::Path mAreaClipper;
    for ( auto vertex : _scenario.getMeasurementAreaENU().outer() ){
        mAreaClipper.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
                                                    static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
    }
    vector<ClipperLib::Path> processedTilesClipper;
    for (auto t : processedTiles){
        ClipperLib::Path path;
        for (auto vertex : t.outer()){
            path.push_back(ClipperLib::IntPoint{static_cast<ClipperLib::cInt>(vertex.get<0>()*CLIPPER_SCALE),
                                                static_cast<ClipperLib::cInt>(vertex.get<1>()*CLIPPER_SCALE)});
        }
        processedTilesClipper.push_back(path);
    }

    const min_bbox_rt &bbox     = _scenario.getMeasurementAreaBBoxENU();
    double alpha                = bbox.angle;
    double x0                   = bbox.corners.outer()[0].get<0>();
    double y0                   = bbox.corners.outer()[0].get<1>();
    double bboxWidth            = bbox.width;
    double bboxHeight           = bbox.height;
    double delta                = detail::offsetConstant;

    size_t num_t = int(ceil((bboxHeight + 2*delta)/lineDistance)); // number of transects
    vector<double> yCoords;
    yCoords.reserve(num_t);
    double y = -delta;
    for (size_t i=0; i < num_t; ++i) {
        yCoords.push_back(y);
        y += lineDistance;
    }


    // Generate transects and convert them to clipper path.
    trans::rotate_transformer<boost::geometry::degree, double, 2, 2> rotate_back(-alpha*180/M_PI);
    trans::translate_transformer<double, 2, 2> translate_back(x0, y0);
    vector<ClipperLib::Path> transectsClipper;
    transectsClipper.reserve(num_t);
    for (size_t i=0; i < num_t; ++i) {
        // calculate transect
        BoostPoint v1{-delta, yCoords[i]};
        BoostPoint v2{bboxWidth+delta, yCoords[i]};
        BoostLineString transect;
        transect.push_back(v1);
        transect.push_back(v2);

        // transform back
        BoostLineString temp_transect;
        bg::transform(transect, temp_transect, rotate_back);
        transect.clear();
        bg::transform(temp_transect, transect, translate_back);


        ClipperLib::IntPoint c1{static_cast<ClipperLib::cInt>(transect[0].get<0>()*CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(transect[0].get<1>()*CLIPPER_SCALE)};
        ClipperLib::IntPoint c2{static_cast<ClipperLib::cInt>(transect[1].get<0>()*CLIPPER_SCALE),
                                static_cast<ClipperLib::cInt>(transect[1].get<1>()*CLIPPER_SCALE)};
        ClipperLib::Path path{c1, c2};
        transectsClipper.push_back(path);
    }

    // Perform clipping.
    // Clip transects to measurement area.
    ClipperLib::Clipper clipper;
    clipper.AddPath(mAreaClipper, ClipperLib::ptClip, true);
    clipper.AddPaths(transectsClipper, ClipperLib::ptSubject, false);
    ClipperLib::PolyTree clippedTransecsPolyTree1;
    clipper.Execute(ClipperLib::ctIntersection, clippedTransecsPolyTree1, ClipperLib::pftNonZero, ClipperLib::pftNonZero);

    // Subtract holes (tiles with measurement_progress == 100) from transects.
    clipper.Clear();
    for (auto child : clippedTransecsPolyTree1.Childs)
        clipper.AddPath(child->Contour, ClipperLib::ptSubject, false);
    clipper.AddPaths(processedTilesClipper, ClipperLib::ptClip, true);
    ClipperLib::PolyTree clippedTransecsPolyTree2;
    clipper.Execute(ClipperLib::ctDifference, clippedTransecsPolyTree2, ClipperLib::pftNonZero, ClipperLib::pftNonZero);

    // Extract transects from  PolyTree and convert them to BoostLineString
    for (auto child : clippedTransecsPolyTree2.Childs){
        ClipperLib::Path clipperTransect = child->Contour;
        BoostPoint v1{static_cast<double>(clipperTransect[0].X)/CLIPPER_SCALE,
                      static_cast<double>(clipperTransect[0].Y)/CLIPPER_SCALE};
        BoostPoint v2{static_cast<double>(clipperTransect[1].X)/CLIPPER_SCALE,
                      static_cast<double>(clipperTransect[1].Y)/CLIPPER_SCALE};

        BoostLineString transect{v1, v2};
        if (bg::length(transect) >= minTransectLength)
            _transects.push_back(transect);

    }

    if (_transects.size() < 1)
        return false;

    return true;
}

void FlightPlan::_generateRoutingModel(const BoostLineString &vertices,
                                       const BoostPolygon &polygonOffset,
                                       size_t n0,
                                       FlightPlan::RoutingDataModel_t &dataModel,
                                       Matrix<double> &graph)
{
    auto start = std::chrono::high_resolution_clock::now();
    graphFromPolygon(polygonOffset, vertices, graph);
    auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
    cout << "Execution time graphFromPolygon(): " << delta.count() << " ms" << endl;
//    cout << endl;
//    for (size_t i=0; i<graph.size(); ++i){
//        vector<double> &row = graph[i];
//        for (size_t j=0; j<row.size();++j){
//            cout << "(" << i << "," << j << "):" << row[j] << " ";
//        }
//        cout << endl;
//    }
//    cout << endl;
    Matrix<double> distanceMatrix(graph);
    start = std::chrono::high_resolution_clock::now();
    toDistanceMatrix(distanceMatrix);
    delta = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now()-start);
    cout << "Execution time toDistanceMatrix(): " << delta.count() << " ms" << endl;

    dataModel.distanceMatrix.setDimension(n0, n0);
    for (size_t i=0; i<n0; ++i){
        dataModel.distanceMatrix.set(i, i, 0);
        for (size_t j=i+1; j<n0; ++j){
            dataModel.distanceMatrix.set(i, j, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
            dataModel.distanceMatrix.set(j, i, int64_t(distanceMatrix.get(i, j)*CLIPPER_SCALE));
        }
    }

    dataModel.numVehicles   = 1;
    dataModel.depot         = n0-1;
}

}