SparseSparseProduct.h 14.1 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSESPARSEPRODUCT_H
#define EIGEN_SPARSESPARSEPRODUCT_H

namespace internal {

template<typename Lhs, typename Rhs, typename ResultType>
static void sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
  typedef typename remove_all<Lhs>::type::Scalar Scalar;
  typedef typename remove_all<Lhs>::type::Index Index;

  // make sure to call innerSize/outerSize since we fake the storage order.
  Index rows = lhs.innerSize();
  Index cols = rhs.outerSize();
  eigen_assert(lhs.outerSize() == rhs.innerSize());

  std::vector<bool> mask(rows,false);
  Matrix<Scalar,Dynamic,1> values(rows);
  Matrix<Index,Dynamic,1>    indices(rows);

  // estimate the number of non zero entries
  float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
  float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
  float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);

//  int t200 = rows/(log2(200)*1.39);
//  int t = (rows*100)/139;

  res.resize(rows, cols);
  res.reserve(Index(ratioRes*rows*cols));
  // we compute each column of the result, one after the other
  for (Index j=0; j<cols; ++j)
  {

    res.startVec(j);
    Index nnz = 0;
    for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
    {
      Scalar y = rhsIt.value();
      Index k = rhsIt.index();
      for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
      {
        Index i = lhsIt.index();
        Scalar x = lhsIt.value();
        if(!mask[i])
        {
          mask[i] = true;
//           values[i] = x * y;
//           indices[nnz] = i;
          ++nnz;
        }
        else
          values[i] += x * y;
      }
    }
    // FIXME reserve nnz non zeros
    // FIXME implement fast sort algorithms for very small nnz
    // if the result is sparse enough => use a quick sort
    // otherwise => loop through the entire vector
    // In order to avoid to perform an expensive log2 when the
    // result is clearly very sparse we use a linear bound up to 200.
//     if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
//     {
//       if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
//       for(int k=0; k<nnz; ++k)
//       {
//         int i = indices[k];
//         res.insertBackNoCheck(j,i) = values[i];
//         mask[i] = false;
//       }
//     }
//     else
//     {
//       // dense path
//       for(int i=0; i<rows; ++i)
//       {
//         if(mask[i])
//         {
//           mask[i] = false;
//           res.insertBackNoCheck(j,i) = values[i];
//         }
//       }
//     }

  }
  res.finalize();
}

// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
template<typename Lhs, typename Rhs, typename ResultType>
static void sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
//   return sparse_product_impl2(lhs,rhs,res);

  typedef typename remove_all<Lhs>::type::Scalar Scalar;
  typedef typename remove_all<Lhs>::type::Index Index;

  // make sure to call innerSize/outerSize since we fake the storage order.
  Index rows = lhs.innerSize();
  Index cols = rhs.outerSize();
  //int size = lhs.outerSize();
  eigen_assert(lhs.outerSize() == rhs.innerSize());

  // allocate a temporary buffer
  AmbiVector<Scalar,Index> tempVector(rows);

  // estimate the number of non zero entries
  float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
  float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
  float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);

  // mimics a resizeByInnerOuter:
  if(ResultType::IsRowMajor)
    res.resize(cols, rows);
  else
    res.resize(rows, cols);

  res.reserve(Index(ratioRes*rows*cols));
  for (Index j=0; j<cols; ++j)
  {
    // let's do a more accurate determination of the nnz ratio for the current column j of res
    //float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
    // FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
    float ratioColRes = ratioRes;
    tempVector.init(ratioColRes);
    tempVector.setZero();
    for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
    {
      // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
      tempVector.restart();
      Scalar x = rhsIt.value();
      for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
      {
        tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
      }
    }
    res.startVec(j);
    for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector); it; ++it)
      res.insertBackByOuterInner(j,it.index()) = it.value();
  }
  res.finalize();
}

template<typename Lhs, typename Rhs, typename ResultType,
  int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
  int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
  int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
struct sparse_product_selector;

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
  typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;

  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
//     std::cerr << __LINE__ << "\n";
    typename remove_all<ResultType>::type _res(res.rows(), res.cols());
    sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
    res.swap(_res);
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
//     std::cerr << __LINE__ << "\n";
    // we need a col-major matrix to hold the result
    typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
    SparseTemporaryType _res(res.rows(), res.cols());
    sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
    res = _res;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
//     std::cerr << __LINE__ << "\n";
    // let's transpose the product to get a column x column product
    typename remove_all<ResultType>::type _res(res.rows(), res.cols());
    sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
    res.swap(_res);
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
//     std::cerr << "here...\n";
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix colLhs(lhs);
    ColMajorMatrix colRhs(rhs);
//     std::cerr << "more...\n";
    sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
//     std::cerr << "OK.\n";

    // let's transpose the product to get a column x column product

//     typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
//     SparseTemporaryType _res(res.cols(), res.rows());
//     sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
//     res = _res.transpose();
  }
};

// NOTE the 2 others cases (col row *) must never occur since they are caught
// by ProductReturnType which transforms it to (col col *) by evaluating rhs.

} // end namespace internal

// sparse = sparse * sparse
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
{
//   std::cerr << "there..." << typeid(Lhs).name() << "  " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
  internal::sparse_product_selector<
    typename internal::remove_all<Lhs>::type,
    typename internal::remove_all<Rhs>::type,
    Derived>::run(product.lhs(),product.rhs(),derived());
  return derived();
}

namespace internal {

template<typename Lhs, typename Rhs, typename ResultType,
  int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
  int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
  int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
struct sparse_product_selector2;

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
  typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;

  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
      // prevent warnings until the code is fixed
      EIGEN_UNUSED_VARIABLE(lhs);
      EIGEN_UNUSED_VARIABLE(rhs);
      EIGEN_UNUSED_VARIABLE(res);

//     typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
//     RowMajorMatrix rhsRow = rhs;
//     RowMajorMatrix resRow(res.rows(), res.cols());
//     sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
//     res = resRow;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    RowMajorMatrix lhsRow = lhs;
    RowMajorMatrix resRow(res.rows(), res.cols());
    sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
    res = resRow;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
    RowMajorMatrix resRow(res.rows(), res.cols());
    sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
    res = resRow;
  }
};


template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
  typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;

  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix resCol(res.rows(), res.cols());
    sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix lhsCol = lhs;
    ColMajorMatrix resCol(res.rows(), res.cols());
    sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix rhsCol = rhs;
    ColMajorMatrix resCol(res.rows(), res.cols());
    sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
    res = resCol;
  }
};

template<typename Lhs, typename Rhs, typename ResultType>
struct sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
  static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
  {
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
//     ColMajorMatrix lhsTr(lhs);
//     ColMajorMatrix rhsTr(rhs);
//     ColMajorMatrix aux(res.rows(), res.cols());
//     sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
// //     ColMajorMatrix aux2 = aux.transpose();
//     res = aux;
    typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
    ColMajorMatrix lhsCol(lhs);
    ColMajorMatrix rhsCol(rhs);
    ColMajorMatrix resCol(res.rows(), res.cols());
    sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
    res = resCol;
  }
};

} // end namespace internal

template<typename Derived>
template<typename Lhs, typename Rhs>
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
{
  //derived().resize(lhs.rows(), rhs.cols());
  internal::sparse_product_selector2<
    typename internal::remove_all<Lhs>::type,
    typename internal::remove_all<Rhs>::type,
    Derived>::run(lhs,rhs,derived());
}

// sparse * sparse
template<typename Derived>
template<typename OtherDerived>
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
{
  return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}

#endif // EIGEN_SPARSESPARSEPRODUCT_H