presolve_context.h 19.8 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_
#define OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_

#include <deque>
#include <vector>

#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/presolve_util.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/affine_relation.h"
#include "ortools/util/bitset.h"
#include "ortools/util/sorted_interval_list.h"
#include "ortools/util/time_limit.h"

namespace operations_research {
namespace sat {

// We use some special constraint index in our variable <-> constraint graph.
constexpr int kObjectiveConstraint = -1;
constexpr int kAffineRelationConstraint = -2;
35
constexpr int kAssumptionsConstraint = -3;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

struct PresolveOptions {
  bool log_info = true;
  SatParameters parameters;
  TimeLimit* time_limit = nullptr;
};

class PresolveContext;

// When storing a reference to a literal, it is important not to forget when
// reading it back to take its representative. Otherwise, we might introduce
// literal that have already been removed, which will break invariants in a
// bunch of places.
class SavedLiteral {
 public:
  SavedLiteral() {}
  explicit SavedLiteral(int ref) : ref_(ref) {}
  int Get(PresolveContext* context) const;

 private:
  int ref_ = 0;
};

// Same as SavedLiteral for variable.
class SavedVariable {
 public:
  SavedVariable() {}
  explicit SavedVariable(int ref) : ref_(ref) {}
  int Get(PresolveContext* context) const;

 private:
  int ref_ = 0;
};

// Wrap the CpModelProto we are presolving with extra data structure like the
// in-memory domain of each variables and the constraint variable graph.
class PresolveContext {
 public:
  explicit PresolveContext(CpModelProto* model, CpModelProto* mapping)
      : working_model(model), mapping_model(mapping) {}

  // Helpers to adds new variables to the presolved model.
  int NewIntVar(const Domain& domain);
  int NewBoolVar();
  int GetOrCreateConstantVar(int64 cst);

  // a => b.
  void AddImplication(int a, int b);

  // b => x in [lb, ub].
  void AddImplyInDomain(int b, int x, const Domain& domain);

  // Helpers to query the current domain of a variable.
  bool DomainIsEmpty(int ref) const;
  bool IsFixed(int ref) const;
  bool CanBeUsedAsLiteral(int ref) const;
  bool LiteralIsTrue(int lit) const;
  bool LiteralIsFalse(int lit) const;
  int64 MinOf(int ref) const;
  int64 MaxOf(int ref) const;
  bool DomainContains(int ref, int64 value) const;
  Domain DomainOf(int ref) const;

  // Helpers to query the current domain of a linear expression.
  // This doesn't check for integer overflow, but our linear expression
  // should be such that this cannot happen (tested at validation).
  int64 MinOf(const LinearExpressionProto& expr) const;
  int64 MaxOf(const LinearExpressionProto& expr) const;

  // This function takes a positive variable reference.
  bool DomainOfVarIsIncludedIn(int var, const Domain& domain) {
    return domains[var].IsIncludedIn(domain);
  }

  // Returns true if this ref only appear in one constraint.
  bool VariableIsUniqueAndRemovable(int ref) const;

  // Returns true if this ref no longer appears in the model.
  bool VariableIsNotUsedAnymore(int ref) const;

  // Functions to make sure that once we remove a variable, we no longer reuse
  // it.
  void MarkVariableAsRemoved(int ref);
  bool VariableWasRemoved(int ref) const;

  // Same as VariableIsUniqueAndRemovable() except that in this case the
  // variable also appear in the objective in addition to a single constraint.
  bool VariableWithCostIsUniqueAndRemovable(int ref) const;

  // Returns true if an integer variable is only appearing in the rhs of
  // constraints of the form lit => var in domain. When this is the case, then
  // we can usually remove this variable and replace these constraints with
  // the proper constraints on the enforcement literals.
  bool VariableIsOnlyUsedInEncoding(int ref) const;

  // Returns false if the new domain is empty. Sets 'domain_modified' (if
  // provided) to true iff the domain is modified otherwise does not change it.
  ABSL_MUST_USE_RESULT bool IntersectDomainWith(
      int ref, const Domain& domain, bool* domain_modified = nullptr);

  // Returns false if the 'lit' doesn't have the desired value in the domain.
  ABSL_MUST_USE_RESULT bool SetLiteralToFalse(int lit);
  ABSL_MUST_USE_RESULT bool SetLiteralToTrue(int lit);

  // This function always return false. It is just a way to make a little bit
  // more sure that we abort right away when infeasibility is detected.
  ABSL_MUST_USE_RESULT bool NotifyThatModelIsUnsat(
      const std::string& message = "") {
    // TODO(user): Report any explanation for the client in a nicer way?
    VLOG(1) << "INFEASIBLE: " << message;
    DCHECK(!is_unsat);
    is_unsat = true;
    return false;
  }
  bool ModelIsUnsat() const { return is_unsat; }

  // Stores a description of a rule that was just applied to have a summary of
  // what the presolve did at the end.
  void UpdateRuleStats(const std::string& name);

  // Updates the constraints <-> variables graph. This needs to be called each
  // time a constraint is modified.
  void UpdateConstraintVariableUsage(int c);

  // At the beginning of the presolve, we delay the costly creation of this
  // "graph" until we at least ran some basic presolve. This is because during
  // a LNS neighbhorhood, many constraints will be reduced significantly by
  // this "simple" presolve.
  bool ConstraintVariableGraphIsUpToDate() const;

  // Calls UpdateConstraintVariableUsage() on all newly created constraints.
  void UpdateNewConstraintsVariableUsage();

  // Returns true if our current constraints <-> variables graph is ok.
  // This is meant to be used in DEBUG mode only.
  bool ConstraintVariableUsageIsConsistent();

  // Regroups fixed variables with the same value.
  // TODO(user): Also regroup cte and -cte?
  void ExploitFixedDomain(int var);

  // Adds the relation (ref_x = coeff * ref_y + offset) to the repository.
  // Once the relation is added, it doesn't need to be enforced by a constraint
  // in the model proto, since we will propagate such relation directly and add
  // them to the proto at the end of the presolve.
  //
  // Returns true if the relation was added.
  // In some rare case, like if x = 3*z and y = 5*t are already added, we
  // currently cannot add x = 2 * y and we will return false in these case. So
  // when this returns false, the relation needs to be enforced by a separate
  // constraint.
  //
  // If the relation was added, both variables will be marked to appear in the
  // special kAffineRelationConstraint. This will allow to identify when a
  // variable is no longer needed (only appear there and is not a
  // representative).
  bool StoreAffineRelation(int ref_x, int ref_y, int64 coeff, int64 offset);

  // Adds the fact that ref_a == ref_b using StoreAffineRelation() above.
  // This should never fail, so the relation will always be added.
  void StoreBooleanEqualityRelation(int ref_a, int ref_b);

  // Stores/Get the relation target_ref = abs(ref); The first function returns
  // false if it already exist and the second false if it is not present.
  bool StoreAbsRelation(int target_ref, int ref);
  bool GetAbsRelation(int target_ref, int* ref);

  // Returns the representative of a literal.
  int GetLiteralRepresentative(int ref) const;

  // Returns another reference with exactly the same value.
  int GetVariableRepresentative(int ref) const;

  // Used for statistics.
  int NumAffineRelations() const { return affine_relations_.NumRelations(); }
  int NumEquivRelations() const { return var_equiv_relations_.NumRelations(); }

  // This makes sure that the affine relation only uses one of the
  // representative from the var_equiv_relations.
  AffineRelation::Relation GetAffineRelation(int ref) const;

  // Makes sure the domain of ref and of its representative are in sync.
  // Returns false on unsat.
  bool PropagateAffineRelation(int ref);

  // Creates the internal structure for any new variables in working_model.
  void InitializeNewDomains();

  // Clears the "rules" statistics.
  void ClearStats();

  // Inserts the given literal to encode ref == value.
  // If an encoding already exists, it adds the two implications between
  // the previous encoding and the new encoding.
  //
  // Important: This does not update the constraint<->variable graph, so
  // ConstraintVariableGraphIsUpToDate() will be false until
  // UpdateNewConstraintsVariableUsage() is called.
  void InsertVarValueEncoding(int literal, int ref, int64 value);

  // Gets the associated literal if it is already created. Otherwise
  // create it, add the corresponding constraints and returns it.
  //
  // Important: This does not update the constraint<->variable graph, so
  // ConstraintVariableGraphIsUpToDate() will be false until
  // UpdateNewConstraintsVariableUsage() is called.
  int GetOrCreateVarValueEncoding(int ref, int64 value);

  // If not already done, adds a Boolean to represent any integer variables that
  // take only two values. Make sure all the relevant affine and encoding
  // relations are updated.
  //
  // Note that this might create a new Boolean variable.
  void CanonicalizeDomainOfSizeTwo(int var);

  // Returns true if a literal attached to ref == var exists.
  // It assigns the corresponding to `literal` if non null.
  bool HasVarValueEncoding(int ref, int64 value, int* literal = nullptr);

  // Stores the fact that literal implies var == value.
  // It returns true if that information is new.
  bool StoreLiteralImpliesVarEqValue(int literal, int var, int64 value);

  // Stores the fact that literal implies var != value.
  // It returns true if that information is new.
  bool StoreLiteralImpliesVarNEqValue(int literal, int var, int64 value);

  // Objective handling functions. We load it at the beginning so that during
  // presolve we can work on the more efficient hash_map representation.
  //
  // Note that ReadObjectiveFromProto() makes sure that var_to_constraints of
  // all the variable that appear in the objective contains -1. This is later
  // enforced by all the functions modifying the objective.
  //
  // Note(user): Because we process affine relation only on
  // CanonicalizeObjective(), it is possible that when processing a
  // canonicalized linear constraint, we don't detect that a variable in affine
  // relation is in the objective. For now this is fine, because when this is
  // the case, we also have an affine linear constraint, so we can't really do
  // anything with that variable since it appear in at least two constraints.
  void ReadObjectiveFromProto();
  ABSL_MUST_USE_RESULT bool CanonicalizeObjective();
  void WriteObjectiveToProto();

  // Given a variable defined by the given inequality that also appear in the
  // objective, remove it from the objective by transferring its cost to other
  // variables in the equality.
  //
  // If new_vars_in_objective is not nullptr, it will be filled with "new"
  // variables that where not in the objective before and are after
  // substitution.
  void SubstituteVariableInObjective(
      int var_in_equality, int64 coeff_in_equality,
      const ConstraintProto& equality,
      std::vector<int>* new_vars_in_objective = nullptr);

  // Objective getters.
  const Domain& ObjectiveDomain() const { return objective_domain; }
  const absl::flat_hash_map<int, int64>& ObjectiveMap() const {
    return objective_map;
  }
  bool ObjectiveDomainIsConstraining() const {
    return objective_domain_is_constraining;
  }

  // Advanced usage. This should be called when a variable can be removed from
  // the problem, so we don't count it as part of an affine relation anymore.
  void RemoveVariableFromAffineRelation(int var);
  void RemoveAllVariablesFromAffineRelationConstraint();

  // Variable <-> constraint graph.
  // The vector list is sorted and contains unique elements.
  //
  // Important: To properly handle the objective, var_to_constraints[objective]
  // contains -1 so that if the objective appear in only one constraint, the
  // constraint cannot be simplified.
  const std::vector<int>& ConstraintToVars(int c) const {
    DCHECK(ConstraintVariableGraphIsUpToDate());
    return constraint_to_vars_[c];
  }
  const absl::flat_hash_set<int>& VarToConstraints(int var) const {
    DCHECK(ConstraintVariableGraphIsUpToDate());
    return var_to_constraints_[var];
  }
  int IntervalUsage(int c) const {
    DCHECK(ConstraintVariableGraphIsUpToDate());
    return interval_usage_[c];
  }

325 326 327 328 329 330 331 332
  // Make sure we never delete an "assumption" literal by using a special
  // constraint for that.
  void RegisterVariablesUsedInAssumptions() {
    for (const int ref : working_model->assumptions()) {
      var_to_constraints_[PositiveRef(ref)].insert(kAssumptionsConstraint);
    }
  }

Valentin Platzgummer's avatar
Valentin Platzgummer committed
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  // For each variables, list the constraints that just enforce a lower bound
  // (resp. upper bound) on that variable. If all the constraints in which a
  // variable appear are in the same direction, then we can usually fix a
  // variable to one of its bound (modulo its cost).
  //
  // TODO(user): Keeping these extra vector of hash_set seems inefficient. Come
  // up with a better way to detect if a variable is only constrainted in one
  // direction.
  std::vector<absl::flat_hash_set<int>> var_to_ub_only_constraints;
  std::vector<absl::flat_hash_set<int>> var_to_lb_only_constraints;

  CpModelProto* working_model = nullptr;
  CpModelProto* mapping_model = nullptr;

  // Indicate if we are allowed to remove irrelevant feasible solution from the
  // set of feasible solution. For example, if a variable is unused, can we fix
  // it to an arbitrary value (or its mimimum objective one)? This must be true
  // if the client wants to enumerate all solutions or wants correct tightened
  // bounds in the response.
  bool keep_all_feasible_solutions = false;

  // If true, fills stats_by_rule_name, otherwise do not do that. This can take
  // a few percent of the run time with a lot of LNS threads.
  bool enable_stats = true;

  // Just used to display statistics on the presolve rules that were used.
  absl::flat_hash_map<std::string, int> stats_by_rule_name;

  // Number of "rules" applied. This should be equal to the sum of all numbers
  // in stats_by_rule_name. This is used to decide if we should do one more pass
  // of the presolve or not. Note that depending on the presolve transformation,
  // a rule can correspond to a tiny change or a big change. Because of that,
  // this isn't a perfect proxy for the efficacy of the presolve.
  int64 num_presolve_operations = 0;

  // Temporary storage.
  std::vector<int> tmp_literals;
  std::vector<Domain> tmp_term_domains;
  std::vector<Domain> tmp_left_domains;
  absl::flat_hash_set<int> tmp_literal_set;

  // Each time a domain is modified this is set to true.
  SparseBitset<int64> modified_domains;

  // Advanced presolve. See this class comment.
  DomainDeductions deductions;

 private:
  // Helper to add an affine relation x = c.y + o to the given repository.
382
  bool AddRelation(int x, int y, int64 c, int64 o, AffineRelation* repo);
Valentin Platzgummer's avatar
Valentin Platzgummer committed
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

  void AddVariableUsage(int c);
  void UpdateLinear1Usage(const ConstraintProto& ct, int c);

  // Returns true iff the variable is not the representative of an equivalence
  // class of size at least 2.
  bool VariableIsNotRepresentativeOfEquivalenceClass(int var) const;

  // Process encoding_remap_queue_ and updates the encoding maps. This could
  // lead to UNSAT being detected, in which case it will return false.
  bool RemapEncodingMaps();

  // Makes sure we only insert encoding about the current representative.
  //
  // Returns false if ref cannot take the given value (it might not have been
  // propagated yed).
  bool CanonicalizeEncoding(int* ref, int64* value);

  // Inserts an half reified var value encoding (literal => var ==/!= value).
  // It returns true if the new state is different from the old state.
  // Not that if imply_eq is false, the literal will be stored in its negated
  // form.
  //
  // Thus, if you detect literal <=> var == value, then two calls must be made:
  //     InsertHalfVarValueEncoding(literal, var, value, true);
  //     InsertHalfVarValueEncoding(NegatedRef(literal), var, value, false);
  bool InsertHalfVarValueEncoding(int literal, int var, int64 value,
                                  bool imply_eq);

  // Insert fully reified var-value encoding.
  void InsertVarValueEncodingInternal(int literal, int var, int64 value,
                                      bool add_constraints);

  // Initially false, and set to true on the first inconsistency.
  bool is_unsat = false;

  // The current domain of each variables.
  std::vector<Domain> domains;

  // Internal representation of the objective. During presolve, we first load
  // the objective in this format in order to have more efficient substitution
  // on large problems (also because the objective is often dense). At the end
  // we re-convert it to its proto form.
  absl::flat_hash_map<int, int64> objective_map;
  std::vector<std::pair<int, int64>> tmp_entries;
  bool objective_domain_is_constraining = false;
  Domain objective_domain;
  double objective_offset;
  double objective_scaling_factor;

  // Constraints <-> Variables graph.
  std::vector<std::vector<int>> constraint_to_vars_;
  std::vector<absl::flat_hash_set<int>> var_to_constraints_;

  // Number of constraints of the form [lit =>] var in domain.
  std::vector<int> constraint_to_linear1_var_;
  std::vector<int> var_to_num_linear1_;

  // We maintain how many time each interval is used.
  std::vector<std::vector<int>> constraint_to_intervals_;
  std::vector<int> interval_usage_;

  // Contains abs relation (key = abs(saved_variable)).
  absl::flat_hash_map<int, SavedVariable> abs_relations_;

  // For each constant variable appearing in the model, we maintain a reference
  // variable with the same constant value. If two variables end up having the
  // same fixed value, then we can detect it using this and add a new
  // equivalence relation. See ExploitFixedDomain().
  absl::flat_hash_map<int64, SavedVariable> constant_to_ref_;

  // When a "representative" gets a new representative, it should be enqueued
  // here so that we can lazily update the *encoding_ maps below.
  std::deque<int> encoding_remap_queue_;

  // Contains variables with some encoded value: encoding_[i][v] points
  // to the literal attached to the value v of the variable i.
  absl::flat_hash_map<int, absl::flat_hash_map<int64, SavedLiteral>> encoding_;

  // Contains the currently collected half value encodings:
  //   i.e.: literal => var ==/!= value
  // The state is accumulated (adding x => var == value then !x => var != value)
  // will deduce that x equivalent to var == value.
  absl::flat_hash_map<int, absl::flat_hash_map<int64, absl::flat_hash_set<int>>>
      eq_half_encoding_;
  absl::flat_hash_map<int, absl::flat_hash_map<int64, absl::flat_hash_set<int>>>
      neq_half_encoding_;

  // This regroups all the affine relations between variables. Note that the
  // constraints used to detect such relations will not be removed from the
  // model at detection time (thus allowing proper domain propagation). However,
  // if the arity of a variable becomes one, then such constraint will be
  // removed.
  AffineRelation affine_relations_;
  AffineRelation var_equiv_relations_;

  std::vector<int> tmp_new_usage_;

  // Used by SetVariableAsRemoved() and VariableWasRemoved().
  absl::flat_hash_set<int> removed_variables_;
};

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_PRESOLVE_CONTEXT_H_