precedences.h 21.7 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_PRECEDENCES_H_
#define OR_TOOLS_SAT_PRECEDENCES_H_

#include <deque>
#include <functional>
#include <vector>

#include "absl/container/inlined_vector.h"
#include "ortools/base/int_type.h"
#include "ortools/base/int_type_indexed_vector.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/macros.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/bitset.h"

namespace operations_research {
namespace sat {

// This class implement a propagator on simple inequalities between integer
// variables of the form (i1 + offset <= i2). The offset can be constant or
// given by the value of a third integer variable. Offsets can also be negative.
//
// The algorithm work by mapping the problem onto a graph where the edges carry
// the offset and the nodes correspond to one of the two bounds of an integer
// variable (lower_bound or -upper_bound). It then find the fixed point using an
// incremental variant of the Bellman-Ford(-Tarjan) algorithm.
//
// This is also known as an "integer difference logic theory" in the SMT world.
// Another word is "separation logic".
//
// TODO(user): We could easily generalize the code to support any relation of
// the form a*X + b*Y + c*Z >= rhs (or <=). Do that since this class should be
// a lot faster at propagating small linear inequality than the generic
// propagator and the overhead of supporting coefficient should not be too bad.
class PrecedencesPropagator : public SatPropagator, PropagatorInterface {
 public:
  explicit PrecedencesPropagator(Model* model)
      : SatPropagator("PrecedencesPropagator"),
        trail_(model->GetOrCreate<Trail>()),
        integer_trail_(model->GetOrCreate<IntegerTrail>()),
        watcher_(model->GetOrCreate<GenericLiteralWatcher>()),
        watcher_id_(watcher_->Register(this)) {
    model->GetOrCreate<SatSolver>()->AddPropagator(this);
    integer_trail_->RegisterWatcher(&modified_vars_);
    watcher_->SetPropagatorPriority(watcher_id_, 0);
  }

  bool Propagate() final;
  bool Propagate(Trail* trail) final;
  void Untrail(const Trail& trail, int trail_index) final;

  // Propagates all the outgoing arcs of the given variable (and only those). It
  // is more efficient to do all these propagation in one go by calling
  // Propagate(), but for scheduling problem, we wants to propagate right away
  // the end of an interval when its start moved.
  bool PropagateOutgoingArcs(IntegerVariable var);

  // Add a precedence relation (i1 + offset <= i2) between integer variables.
  //
  // Important: The optionality of the variable should be marked BEFORE this
  // is called.
  void AddPrecedence(IntegerVariable i1, IntegerVariable i2);
  void AddPrecedenceWithOffset(IntegerVariable i1, IntegerVariable i2,
                               IntegerValue offset);
  void AddPrecedenceWithVariableOffset(IntegerVariable i1, IntegerVariable i2,
                                       IntegerVariable offset_var);

  // Same as above, but the relation is only true when the given literal is.
  void AddConditionalPrecedence(IntegerVariable i1, IntegerVariable i2,
                                Literal l);
  void AddConditionalPrecedenceWithOffset(IntegerVariable i1,
                                          IntegerVariable i2,
                                          IntegerValue offset, Literal l);

  // Generic function that cover all of the above case and more.
  void AddPrecedenceWithAllOptions(IntegerVariable i1, IntegerVariable i2,
                                   IntegerValue offset,
                                   IntegerVariable offset_var,
                                   absl::Span<const Literal> presence_literals);

  // Finds all the IntegerVariable that are "after" at least two of the
  // IntegerVariable in vars. Returns a vector of these precedences relation
  // sorted by IntegerPrecedences.var so that it is efficient to find all the
  // IntegerVariable "before" another one.
  //
  // Note that we only consider direct precedences here. Given our usage, it may
  // be better to compute the full reachability in the precedence graph, but in
  // pratice that may be too slow.
  //
  // Note that the IntegerVariable in the vector are also returned in
  // topological order for a more efficient propagation in
  // DisjunctivePrecedences::Propagate() where this is used.
  //
  // Important: For identical vars, the entry are sorted by index.
  struct IntegerPrecedences {
    int index;            // position in vars.
    IntegerVariable var;  // An IntegerVariable that is >= to vars[index].
    int arc_index;        // Used by AddPrecedenceReason().
    IntegerValue offset;  // we have: vars[index] + offset <= var
  };
  void ComputePrecedences(const std::vector<IntegerVariable>& vars,
                          std::vector<IntegerPrecedences>* output);
  void AddPrecedenceReason(int arc_index, IntegerValue min_offset,
                           std::vector<Literal>* literal_reason,
                           std::vector<IntegerLiteral>* integer_reason) const;

  // Advanced usage. To be called once all the constraints have been added to
  // the model. This will loop over all "node" in this class, and if one of its
  // optional incoming arcs must be chosen, it will add a corresponding
  // GreaterThanAtLeastOneOfConstraint(). Returns the number of added
  // constraint.
  //
  // TODO(user): This can be quite slow, add some kind of deterministic limit
  // so that we can use it all the time.
  int AddGreaterThanAtLeastOneOfConstraints(Model* model);

 private:
  DEFINE_INT_TYPE(ArcIndex, int);
  DEFINE_INT_TYPE(OptionalArcIndex, int);

  // Given an existing clause, sees if it can be used to add "greater than at
  // least one of" type of constraints. Returns the number of such constraint
  // added.
  int AddGreaterThanAtLeastOneOfConstraintsFromClause(
      const absl::Span<const Literal> clause, Model* model);

  // Another approach for AddGreaterThanAtLeastOneOfConstraints(), this one
  // might be a bit slow as it relies on the propagation engine to detect
  // clauses between incoming arcs presence literals.
  // Returns the number of added constraints.
  int AddGreaterThanAtLeastOneOfConstraintsWithClauseAutoDetection(
      Model* model);

  // Information about an individual arc.
  struct ArcInfo {
    IntegerVariable tail_var;
    IntegerVariable head_var;

    IntegerValue offset;
    IntegerVariable offset_var;  // kNoIntegerVariable if none.

    // This arc is "present" iff all these literals are true.
    absl::InlinedVector<Literal, 6> presence_literals;

    // Used temporarily by our implementation of the Bellman-Ford algorithm. It
    // should be false at the beginning of BellmanFordTarjan().
    mutable bool is_marked;
  };

  // Internal functions to add new precedence relations.
  //
  // Note that internally, we only propagate lower bounds, so each time we add
  // an arc, we actually create two of them: one on the given variables, and one
  // on their negation.
  void AdjustSizeFor(IntegerVariable i);
  void AddArc(IntegerVariable tail, IntegerVariable head, IntegerValue offset,
              IntegerVariable offset_var,
              absl::Span<const Literal> presence_literals);

  // Enqueue a new lower bound for the variable arc.head_lb that was deduced
  // from the current value of arc.tail_lb and the offset of this arc.
  bool EnqueueAndCheck(const ArcInfo& arc, IntegerValue new_head_lb,
                       Trail* trail);
  IntegerValue ArcOffset(const ArcInfo& arc) const;

  // Inspect all the optional arcs that needs inspection (to stay sparse) and
  // check if their presence literal can be propagated to false.
  void PropagateOptionalArcs(Trail* trail);

  // The core algorithm implementation is split in these functions. One must
  // first call InitializeBFQueueWithModifiedNodes() that will push all the
  // IntegerVariable whose lower bound has been modified since the last call.
  // Then, BellmanFordTarjan() will take care of all the propagation and returns
  // false in case of conflict. Internally, it uses DisassembleSubtree() which
  // is the Tarjan variant to detect a possible positive cycle. Before exiting,
  // it will call CleanUpMarkedArcsAndParents().
  //
  // The Tarjan version of the Bellam-Ford algorithm is really nice in our
  // context because it was really easy to make it incremental. Moreover, it
  // supports batch increment!
  //
  // This implementation is kind of unique because of our context and the fact
  // that it is incremental, but a good reference is "Negative-cycle detection
  // algorithms", Boris V. Cherkassky, Andrew V. Goldberg, 1996,
  // http://people.cs.nctu.edu.tw/~tjshen/doc/ne.pdf
  void InitializeBFQueueWithModifiedNodes();
  bool BellmanFordTarjan(Trail* trail);
  bool DisassembleSubtree(int source, int target,
                          std::vector<bool>* can_be_skipped);
  void AnalyzePositiveCycle(ArcIndex first_arc, Trail* trail,
                            std::vector<Literal>* must_be_all_true,
                            std::vector<Literal>* literal_reason,
                            std::vector<IntegerLiteral>* integer_reason);
  void CleanUpMarkedArcsAndParents();

  // Loops over all the arcs and verify that there is no propagation left.
  // This is only meant to be used in a DCHECK() and is not optimized.
  bool NoPropagationLeft(const Trail& trail) const;

  // External class needed to get the IntegerVariable lower bounds and Enqueue
  // new ones.
  Trail* trail_;
  IntegerTrail* integer_trail_;
  GenericLiteralWatcher* watcher_;
  int watcher_id_;

  // The key to our incrementality. This will be cleared once the propagation
  // is done, and automatically updated by the integer_trail_ with all the
  // IntegerVariable that changed since the last clear.
  SparseBitset<IntegerVariable> modified_vars_;

  // An arc needs to be inspected for propagation (i.e. is impacted) if its
  // tail_var changed. If an arc has 3 variables (tail, offset, head), it will
  // appear as 6 different entries in the arcs_ vector, one for each variable
  // and its negation, each time with a different tail.
  //
  // TODO(user): rearranging the index so that the arc of the same node are
  // consecutive like in StaticGraph should have a big performance impact.
  //
  // TODO(user): We do not need to store ArcInfo.tail_var here.
  gtl::ITIVector<IntegerVariable, absl::InlinedVector<ArcIndex, 6>>
      impacted_arcs_;
  gtl::ITIVector<ArcIndex, ArcInfo> arcs_;

  // This is similar to impacted_arcs_/arcs_ but it is only used to propagate
  // one of the presence literals when the arc cannot be present. An arc needs
  // to appear only once in potential_arcs_, but it will be referenced by
  // all its variable in impacted_potential_arcs_.
  gtl::ITIVector<IntegerVariable, absl::InlinedVector<OptionalArcIndex, 6>>
      impacted_potential_arcs_;
  gtl::ITIVector<OptionalArcIndex, ArcInfo> potential_arcs_;

  // Temporary vectors used by ComputePrecedences().
  gtl::ITIVector<IntegerVariable, int> var_to_degree_;
  gtl::ITIVector<IntegerVariable, int> var_to_last_index_;
  struct SortedVar {
    IntegerVariable var;
    IntegerValue lower_bound;
    bool operator<(const SortedVar& other) const {
      return lower_bound < other.lower_bound;
    }
  };
  std::vector<SortedVar> tmp_sorted_vars_;
  std::vector<IntegerPrecedences> tmp_precedences_;

  // Each time a literal becomes true, this list the set of arcs for which we
  // need to decrement their count. When an arc count reach zero, it must be
  // added to the set of impacted_arcs_. Note that counts never becomes
  // negative.
  //
  // TODO(user): Try a one-watcher approach instead. Note that in most cases
  // arc should be controlled by 1 or 2 literals, so not sure it is worth it.
  gtl::ITIVector<LiteralIndex, absl::InlinedVector<ArcIndex, 6>>
      literal_to_new_impacted_arcs_;
  gtl::ITIVector<ArcIndex, int> arc_counts_;

  // Temp vectors to hold the reason of an assignment.
  std::vector<Literal> literal_reason_;
  std::vector<IntegerLiteral> integer_reason_;

  // Temp vectors for the Bellman-Ford algorithm. The graph in which this
  // algorithm works is in one to one correspondence with the IntegerVariable in
  // impacted_arcs_.
  std::deque<int> bf_queue_;
  std::vector<bool> bf_in_queue_;
  std::vector<bool> bf_can_be_skipped_;
  std::vector<ArcIndex> bf_parent_arc_of_;

  // Temp vector used by the tree traversal in DisassembleSubtree().
  std::vector<int> tmp_vector_;

  DISALLOW_COPY_AND_ASSIGN(PrecedencesPropagator);
};

// =============================================================================
// Implementation of the small API functions below.
// =============================================================================

inline void PrecedencesPropagator::AddPrecedence(IntegerVariable i1,
                                                 IntegerVariable i2) {
  AddArc(i1, i2, /*offset=*/IntegerValue(0), /*offset_var=*/kNoIntegerVariable,
         {});
}

inline void PrecedencesPropagator::AddPrecedenceWithOffset(
    IntegerVariable i1, IntegerVariable i2, IntegerValue offset) {
  AddArc(i1, i2, offset, /*offset_var=*/kNoIntegerVariable, {});
}

inline void PrecedencesPropagator::AddConditionalPrecedence(IntegerVariable i1,
                                                            IntegerVariable i2,
                                                            Literal l) {
  AddArc(i1, i2, /*offset=*/IntegerValue(0), /*offset_var=*/kNoIntegerVariable,
         {l});
}

inline void PrecedencesPropagator::AddConditionalPrecedenceWithOffset(
    IntegerVariable i1, IntegerVariable i2, IntegerValue offset, Literal l) {
  AddArc(i1, i2, offset, /*offset_var=*/kNoIntegerVariable, {l});
}

inline void PrecedencesPropagator::AddPrecedenceWithVariableOffset(
    IntegerVariable i1, IntegerVariable i2, IntegerVariable offset_var) {
  AddArc(i1, i2, /*offset=*/IntegerValue(0), offset_var, {});
}

inline void PrecedencesPropagator::AddPrecedenceWithAllOptions(
    IntegerVariable i1, IntegerVariable i2, IntegerValue offset,
    IntegerVariable offset_var, absl::Span<const Literal> presence_literals) {
  AddArc(i1, i2, offset, offset_var, presence_literals);
}

// =============================================================================
// Model based functions.
// =============================================================================

// a <= b.
inline std::function<void(Model*)> LowerOrEqual(IntegerVariable a,
                                                IntegerVariable b) {
  return [=](Model* model) {
    return model->GetOrCreate<PrecedencesPropagator>()->AddPrecedence(a, b);
  };
}

// a + offset <= b.
inline std::function<void(Model*)> LowerOrEqualWithOffset(IntegerVariable a,
                                                          IntegerVariable b,
                                                          int64 offset) {
  return [=](Model* model) {
    return model->GetOrCreate<PrecedencesPropagator>()->AddPrecedenceWithOffset(
        a, b, IntegerValue(offset));
  };
}

// a + b <= ub.
inline std::function<void(Model*)> Sum2LowerOrEqual(IntegerVariable a,
                                                    IntegerVariable b,
                                                    int64 ub) {
  return LowerOrEqualWithOffset(a, NegationOf(b), -ub);
}

// l => (a + b <= ub).
inline std::function<void(Model*)> ConditionalSum2LowerOrEqual(
    IntegerVariable a, IntegerVariable b, int64 ub,
    const std::vector<Literal>& enforcement_literals) {
  return [=](Model* model) {
    PrecedencesPropagator* p = model->GetOrCreate<PrecedencesPropagator>();
    p->AddPrecedenceWithAllOptions(a, NegationOf(b), IntegerValue(-ub),
                                   kNoIntegerVariable, enforcement_literals);
  };
}

// a + b + c <= ub.
inline std::function<void(Model*)> Sum3LowerOrEqual(IntegerVariable a,
                                                    IntegerVariable b,
                                                    IntegerVariable c,
                                                    int64 ub) {
  return [=](Model* model) {
    PrecedencesPropagator* p = model->GetOrCreate<PrecedencesPropagator>();
    p->AddPrecedenceWithAllOptions(a, NegationOf(c), IntegerValue(-ub), b, {});
  };
}

// l => (a + b + c <= ub).
inline std::function<void(Model*)> ConditionalSum3LowerOrEqual(
    IntegerVariable a, IntegerVariable b, IntegerVariable c, int64 ub,
    const std::vector<Literal>& enforcement_literals) {
  return [=](Model* model) {
    PrecedencesPropagator* p = model->GetOrCreate<PrecedencesPropagator>();
    p->AddPrecedenceWithAllOptions(a, NegationOf(c), IntegerValue(-ub), b,
                                   enforcement_literals);
  };
}

// a >= b.
inline std::function<void(Model*)> GreaterOrEqual(IntegerVariable a,
                                                  IntegerVariable b) {
  return [=](Model* model) {
    return model->GetOrCreate<PrecedencesPropagator>()->AddPrecedence(b, a);
  };
}

// a == b.
inline std::function<void(Model*)> Equality(IntegerVariable a,
                                            IntegerVariable b) {
  return [=](Model* model) {
    model->Add(LowerOrEqual(a, b));
    model->Add(LowerOrEqual(b, a));
  };
}

// a + offset == b.
inline std::function<void(Model*)> EqualityWithOffset(IntegerVariable a,
                                                      IntegerVariable b,
                                                      int64 offset) {
  return [=](Model* model) {
    model->Add(LowerOrEqualWithOffset(a, b, offset));
    model->Add(LowerOrEqualWithOffset(b, a, -offset));
  };
}

// is_le => (a + offset <= b).
inline std::function<void(Model*)> ConditionalLowerOrEqualWithOffset(
    IntegerVariable a, IntegerVariable b, int64 offset, Literal is_le) {
  return [=](Model* model) {
    PrecedencesPropagator* p = model->GetOrCreate<PrecedencesPropagator>();
    p->AddConditionalPrecedenceWithOffset(a, b, IntegerValue(offset), is_le);
  };
}

// is_le => (a <= b).
inline std::function<void(Model*)> ConditionalLowerOrEqual(IntegerVariable a,
                                                           IntegerVariable b,
                                                           Literal is_le) {
  return ConditionalLowerOrEqualWithOffset(a, b, 0, is_le);
}

// is_le <=> (a + offset <= b).
inline std::function<void(Model*)> ReifiedLowerOrEqualWithOffset(
    IntegerVariable a, IntegerVariable b, int64 offset, Literal is_le) {
  return [=](Model* model) {
    PrecedencesPropagator* p = model->GetOrCreate<PrecedencesPropagator>();
    p->AddConditionalPrecedenceWithOffset(a, b, IntegerValue(offset), is_le);

    // The negation of (a + offset <= b) is (a + offset > b) which can be
    // rewritten as (b + 1 - offset <= a).
    p->AddConditionalPrecedenceWithOffset(b, a, IntegerValue(1 - offset),
                                          is_le.Negated());
  };
}

// is_eq <=> (a == b).
inline std::function<void(Model*)> ReifiedEquality(IntegerVariable a,
                                                   IntegerVariable b,
                                                   Literal is_eq) {
  return [=](Model* model) {
    // We creates two extra Boolean variables in this case.
    //
    // TODO(user): Avoid creating them if we already have some literal that
    // have the same meaning. For instance if a client also wanted to know if
    // a <= b, he would have called ReifiedLowerOrEqualWithOffset() directly.
    const Literal is_le = Literal(model->Add(NewBooleanVariable()), true);
    const Literal is_ge = Literal(model->Add(NewBooleanVariable()), true);
    model->Add(ReifiedBoolAnd({is_le, is_ge}, is_eq));
    model->Add(ReifiedLowerOrEqualWithOffset(a, b, 0, is_le));
    model->Add(ReifiedLowerOrEqualWithOffset(b, a, 0, is_ge));
  };
}

// is_eq <=> (a + offset == b).
inline std::function<void(Model*)> ReifiedEqualityWithOffset(IntegerVariable a,
                                                             IntegerVariable b,
                                                             int64 offset,
                                                             Literal is_eq) {
  return [=](Model* model) {
    // We creates two extra Boolean variables in this case.
    //
    // TODO(user): Avoid creating them if we already have some literal that
    // have the same meaning. For instance if a client also wanted to know if
    // a <= b, he would have called ReifiedLowerOrEqualWithOffset() directly.
    const Literal is_le = Literal(model->Add(NewBooleanVariable()), true);
    const Literal is_ge = Literal(model->Add(NewBooleanVariable()), true);
    model->Add(ReifiedBoolAnd({is_le, is_ge}, is_eq));
    model->Add(ReifiedLowerOrEqualWithOffset(a, b, offset, is_le));
    model->Add(ReifiedLowerOrEqualWithOffset(b, a, -offset, is_ge));
  };
}

// a != b.
inline std::function<void(Model*)> NotEqual(IntegerVariable a,
                                            IntegerVariable b) {
  return [=](Model* model) {
    // We have two options (is_gt or is_lt) and one must be true.
    const Literal is_lt = Literal(model->Add(NewBooleanVariable()), true);
    const Literal is_gt = is_lt.Negated();
    model->Add(ConditionalLowerOrEqualWithOffset(a, b, 1, is_lt));
    model->Add(ConditionalLowerOrEqualWithOffset(b, a, 1, is_gt));
  };
}

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_PRECEDENCES_H_