linear_programming_constraint.h 21 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_LINEAR_PROGRAMMING_CONSTRAINT_H_
#define OR_TOOLS_SAT_LINEAR_PROGRAMMING_CONSTRAINT_H_

#include <limits>
#include <utility>
#include <vector>

#include "absl/container/flat_hash_map.h"
#include "ortools/base/int_type.h"
#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_data_utils.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/sat/cuts.h"
#include "ortools/sat/implied_bounds.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/linear_constraint_manager.h"
#include "ortools/sat/model.h"
#include "ortools/sat/util.h"
#include "ortools/util/rev.h"
#include "ortools/util/time_limit.h"

namespace operations_research {
namespace sat {

// Stores for each IntegerVariable its temporary LP solution.
//
// This is shared between all LinearProgrammingConstraint because in the corner
// case where we have many different LinearProgrammingConstraint and a lot of
// variable, we could theoretically use up a quadratic amount of memory
// otherwise.
//
// TODO(user): find a better way?
struct LinearProgrammingConstraintLpSolution
    : public gtl::ITIVector<IntegerVariable, double> {
  LinearProgrammingConstraintLpSolution() {}
};

// Helper struct to combine info generated from solving LP.
struct LPSolveInfo {
  glop::ProblemStatus status;
  double lp_objective = -std::numeric_limits<double>::infinity();
  IntegerValue new_obj_bound = kMinIntegerValue;
};

// A SAT constraint that enforces a set of linear inequality constraints on
// integer variables using an LP solver.
//
// The propagator uses glop's revised simplex for feasibility and propagation.
// It uses the Reduced Cost Strengthening technique, a classic in mixed integer
// programming, for instance see the thesis of Tobias Achterberg,
// "Constraint Integer Programming", sections 7.7 and 8.8, algorithm 7.11.
// http://nbn-resolving.de/urn:nbn:de:0297-zib-11129
//
// Per-constraint bounds propagation is NOT done by this constraint,
// it should be done by redundant constraints, as reduced cost propagation
// may miss some filtering.
//
// Note that this constraint works with double floating-point numbers, so one
// could be worried that it may filter too much in case of precision issues.
// However, by default, we interpret the LP result by recomputing everything
// in integer arithmetic, so we are exact.
class LinearProgrammingDispatcher;
class LinearProgrammingConstraint : public PropagatorInterface,
                                    ReversibleInterface {
 public:
  typedef glop::RowIndex ConstraintIndex;

  explicit LinearProgrammingConstraint(Model* model);
  ~LinearProgrammingConstraint() override;

  // Add a new linear constraint to this LP.
  void AddLinearConstraint(const LinearConstraint& ct);

  // Set the coefficient of the variable in the objective. Calling it twice will
  // overwrite the previous value.
  void SetObjectiveCoefficient(IntegerVariable ivar, IntegerValue coeff);

  // The main objective variable should be equal to the linear sum of
  // the arguments passed to SetObjectiveCoefficient().
  void SetMainObjectiveVariable(IntegerVariable ivar) { objective_cp_ = ivar; }

  // Register a new cut generator with this constraint.
  void AddCutGenerator(CutGenerator generator);

  // Returns the LP value and reduced cost of a variable in the current
  // solution. These functions should only be called when HasSolution() is true.
  //
  // Note that this solution is always an OPTIMAL solution of an LP above or
  // at the current decision level. We "erase" it when we backtrack over it.
  bool HasSolution() const { return lp_solution_is_set_; }
  double SolutionObjectiveValue() const { return lp_objective_; }
  double GetSolutionValue(IntegerVariable variable) const;
  double GetSolutionReducedCost(IntegerVariable variable) const;
  bool SolutionIsInteger() const { return lp_solution_is_integer_; }

  // PropagatorInterface API.
  bool Propagate() override;
  bool IncrementalPropagate(const std::vector<int>& watch_indices) override;
  void RegisterWith(Model* model);

  // ReversibleInterface API.
  void SetLevel(int level) override;

  int NumVariables() const { return integer_variables_.size(); }
  const std::vector<IntegerVariable>& integer_variables() const {
    return integer_variables_;
  }
  std::string DimensionString() const { return lp_data_.GetDimensionString(); }

  // Returns a LiteralIndex guided by the underlying LP constraints.
  // This looks at all unassigned 0-1 variables, takes the one with
  // a support value closest to 0.5, and tries to assign it to 1.
  // If all 0-1 variables have an integer support, returns kNoLiteralIndex.
  // Tie-breaking is done using the variable natural order.
  //
  // TODO(user): This fixes to 1, but for some problems fixing to 0
  // or to the std::round(support value) might work better. When this is the
  // case, change behaviour automatically?
  std::function<LiteralIndex()> HeuristicLPMostInfeasibleBinary(Model* model);

  // Returns a LiteralIndex guided by the underlying LP constraints.
  // This computes the mean of reduced costs over successive calls,
  // and tries to fix the variable which has the highest reduced cost.
  // Tie-breaking is done using the variable natural order.
  // Only works for 0/1 variables.
  //
  // TODO(user): Try to get better pseudocosts than averaging every time
  // the heuristic is called. MIP solvers initialize this with strong branching,
  // then keep track of the pseudocosts when doing tree search. Also, this
  // version only branches on var >= 1 and keeps track of reduced costs from var
  // = 1 to var = 0. This works better than the conventional MIP where the
  // chosen variable will be argmax_var min(pseudocost_var(0->1),
  // pseudocost_var(1->0)), probably because we are doing DFS search where MIP
  // does BFS. This might depend on the model, more trials are necessary. We
  // could also do exponential smoothing instead of decaying every N calls, i.e.
  // pseudo = a * pseudo + (1-a) reduced.
  std::function<LiteralIndex()> HeuristicLPPseudoCostBinary(Model* model);

  // Returns a LiteralIndex guided by the underlying LP constraints.
  // This computes the mean of reduced costs over successive calls,
  // and tries to fix the variable which has the highest reduced cost.
  // Tie-breaking is done using the variable natural order.
  std::function<LiteralIndex()> LPReducedCostAverageBranching();

  // Average number of nonbasic variables with zero reduced costs.
  double average_degeneracy() const {
    return average_degeneracy_.CurrentAverage();
  }

 private:
  // Helper methods for branching. Returns true if branching on the given
  // variable helps with more propagation or finds a conflict.
  bool BranchOnVar(IntegerVariable var);
  LPSolveInfo SolveLpForBranching();

  // Helper method to fill reduced cost / dual ray reason in 'integer_reason'.
  // Generates a set of IntegerLiterals explaining why the best solution can not
  // be improved using reduced costs. This is used to generate explanations for
  // both infeasibility and bounds deductions.
  void FillReducedCostReasonIn(const glop::DenseRow& reduced_costs,
                               std::vector<IntegerLiteral>* integer_reason);

  // Reinitialize the LP from a potentially new set of constraints.
  // This fills all data structure and properly rescale the underlying LP.
  //
  // Returns false if the problem is UNSAT (it can happen when presolve is off
  // and some LP constraint are trivially false).
  bool CreateLpFromConstraintManager();

  // Solve the LP, returns false if something went wrong in the LP solver.
  bool SolveLp();

  // Add a "MIR" cut obtained by first taking the linear combination of the
  // row of the matrix according to "integer_multipliers" and then trying
  // some integer rounding heuristic.
  //
  // Return true if a new cut was added to the cut manager.
  bool AddCutFromConstraints(
      const std::string& name,
      const std::vector<std::pair<glop::RowIndex, IntegerValue>>&
          integer_multipliers);

  // Computes and adds Chvatal-Gomory cuts.
  // This can currently only be called at the root node.
  void AddCGCuts();

  // Computes and adds MIR cuts.
  // This can currently only be called at the root node.
  void AddMirCuts();

  // Updates the bounds of the LP variables from the CP bounds.
  void UpdateBoundsOfLpVariables();

  // Use the dual optimal lp values to compute an EXACT lower bound on the
  // objective. Fills its reason and perform reduced cost strenghtening.
  // Returns false in case of conflict.
  bool ExactLpReasonning();

  // Same as FillDualRayReason() but perform the computation EXACTLY. Returns
  // false in the case that the problem is not provably infeasible with exact
  // computations, true otherwise.
  bool FillExactDualRayReason();

  // Returns number of non basic variables with zero reduced costs.
  int64 CalculateDegeneracy();

  // From a set of row multipliers (at LP scale), scale them back to the CP
  // world and then make them integer (eventually multiplying them by a new
  // scaling factor returned in *scaling).
  //
  // Note that this will loose some precision, but our subsequent computation
  // will still be exact as it will work for any set of multiplier.
  std::vector<std::pair<glop::RowIndex, IntegerValue>> ScaleLpMultiplier(
      bool take_objective_into_account,
      const glop::DenseColumn& dense_lp_multipliers, glop::Fractional* scaling,
      int max_pow = 62) const;

  // Computes from an integer linear combination of the integer rows of the LP a
  // new constraint of the form "sum terms <= upper_bound". All computation are
  // exact here.
  //
  // Returns false if we encountered any integer overflow.
  bool ComputeNewLinearConstraint(
      const std::vector<std::pair<glop::RowIndex, IntegerValue>>&
          integer_multipliers,
      gtl::ITIVector<glop::ColIndex, IntegerValue>* dense_terms,
      IntegerValue* upper_bound) const;

  // Simple heuristic to try to minimize |upper_bound - ImpliedLB(terms)|. This
  // should make the new constraint tighter and correct a bit the imprecision
  // introduced by rounding the floating points values.
  void AdjustNewLinearConstraint(
      std::vector<std::pair<glop::RowIndex, IntegerValue>>* integer_multipliers,
      gtl::ITIVector<glop::ColIndex, IntegerValue>* dense_terms,
      IntegerValue* upper_bound) const;

  // Shortcut for an integer linear expression type.
  using LinearExpression = std::vector<std::pair<glop::ColIndex, IntegerValue>>;

  // Converts a dense represenation of a linear constraint to a sparse one
  // expressed in terms of IntegerVariable.
  void ConvertToLinearConstraint(
      const gtl::ITIVector<glop::ColIndex, IntegerValue>& dense_vector,
      IntegerValue upper_bound, LinearConstraint* result);

  // Compute the implied lower bound of the given linear expression using the
  // current variable bound. Return kMinIntegerValue in case of overflow.
  IntegerValue GetImpliedLowerBound(const LinearConstraint& terms) const;

  // Tests for possible overflow in the propagation of the given linear
  // constraint.
  bool PossibleOverflow(const LinearConstraint& constraint);

  // Reduce the coefficient of the constraint so that we cannot have overflow
  // in the propagation of the given linear constraint. Note that we may loose
  // some strength by doing so.
  //
  // We make sure that any partial sum involving any variable value in their
  // domain do not exceed 2 ^ max_pow.
  void PreventOverflow(LinearConstraint* constraint, int max_pow = 62);

  // Fills integer_reason_ with the reason for the implied lower bound of the
  // given linear expression. We relax the reason if we have some slack.
  void SetImpliedLowerBoundReason(const LinearConstraint& terms,
                                  IntegerValue slack);

  // Fills the deductions vector with reduced cost deductions that can be made
  // from the current state of the LP solver. The given delta should be the
  // difference between the cp objective upper bound and lower bound given by
  // the lp.
  void ReducedCostStrengtheningDeductions(double cp_objective_delta);

  // Returns the variable value on the same scale as the CP variable value.
  glop::Fractional GetVariableValueAtCpScale(glop::ColIndex var);

  // Gets or creates an LP variable that mirrors a CP variable.
  // The variable should be a positive reference.
  glop::ColIndex GetOrCreateMirrorVariable(IntegerVariable positive_variable);

  // This must be called on an OPTIMAL LP and will update the data for
  // LPReducedCostAverageDecision().
  void UpdateAverageReducedCosts();

  // Callback underlying LPReducedCostAverageBranching().
  LiteralIndex LPReducedCostAverageDecision();

  // Updates the simplex iteration limit for the next visit.
  // As per current algorithm, we use a limit which is dependent on size of the
  // problem and drop it significantly if degeneracy is detected. We use
  // DUAL_FEASIBLE status as a signal to correct the prediction. The next limit
  // is capped by 'min_iter' and 'max_iter'. Note that this is enabled only for
  // linearization level 2 and above.
  void UpdateSimplexIterationLimit(const int64 min_iter, const int64 max_iter);

  // This epsilon is related to the precision of the value/reduced_cost returned
  // by the LP once they have been scaled back into the CP domain. So for large
  // domain or cost coefficient, we may have some issues.
  static const double kCpEpsilon;

  // Same but at the LP scale.
  static const double kLpEpsilon;

  // Class responsible for managing all possible constraints that may be part
  // of the LP.
  LinearConstraintManager constraint_manager_;

  // Initial problem in integer form.
  // We always sort the inner vectors by increasing glop::ColIndex.
  struct LinearConstraintInternal {
    IntegerValue lb;
    IntegerValue ub;
    LinearExpression terms;
  };
  LinearExpression integer_objective_;
  IntegerValue objective_infinity_norm_ = IntegerValue(0);
  gtl::ITIVector<glop::RowIndex, LinearConstraintInternal> integer_lp_;
  gtl::ITIVector<glop::RowIndex, IntegerValue> infinity_norms_;

  // Underlying LP solver API.
  glop::LinearProgram lp_data_;
  glop::RevisedSimplex simplex_;
  int64 next_simplex_iter_ = 500;

  // For the scaling.
  glop::LpScalingHelper scaler_;

  // Temporary data for cuts.
  IntegerRoundingCutHelper integer_rounding_cut_helper_;
  LinearConstraint cut_;
  gtl::ITIVector<glop::ColIndex, IntegerValue> tmp_dense_vector_;
  std::vector<double> tmp_lp_values_;
  std::vector<IntegerValue> tmp_var_lbs_;
  std::vector<IntegerValue> tmp_var_ubs_;
  std::vector<glop::RowIndex> tmp_slack_rows_;
  std::vector<IntegerValue> tmp_slack_bounds_;

  // Structures used for mirroring IntegerVariables inside the underlying LP
  // solver: an integer variable var is mirrored by mirror_lp_variable_[var].
  // Note that these indices are dense in [0, mirror_lp_variable_.size()] so
  // they can be used as vector indices.
  std::vector<IntegerVariable> integer_variables_;
  absl::flat_hash_map<IntegerVariable, glop::ColIndex> mirror_lp_variable_;

  // We need to remember what to optimize if an objective is given, because
  // then we will switch the objective between feasibility and optimization.
  bool objective_is_defined_ = false;
  IntegerVariable objective_cp_;

  // Singletons from Model.
  const SatParameters& sat_parameters_;
  Model* model_;
  TimeLimit* time_limit_;
  IntegerTrail* integer_trail_;
  Trail* trail_;
  SearchHeuristicsVector* model_heuristics_;
  IntegerEncoder* integer_encoder_;
  ModelRandomGenerator* random_;

  // Used while deriving cuts.
  ImpliedBoundsProcessor implied_bounds_processor_;

  // The dispatcher for all LP propagators of the model, allows to find which
  // LinearProgrammingConstraint has a given IntegerVariable.
  LinearProgrammingDispatcher* dispatcher_;

  std::vector<IntegerLiteral> integer_reason_;
  std::vector<IntegerLiteral> deductions_;
  std::vector<IntegerLiteral> deductions_reason_;

  // Repository of IntegerSumLE that needs to be kept around for the lazy
  // reasons. Those are new integer constraint that are created each time we
  // solve the LP to a dual-feasible solution. Propagating these constraints
  // both improve the objective lower bound but also perform reduced cost
  // fixing.
  int rev_optimal_constraints_size_ = 0;
  std::vector<std::unique_ptr<IntegerSumLE>> optimal_constraints_;

  // Last OPTIMAL solution found by a call to the underlying LP solver.
  // On IncrementalPropagate(), if the bound updates do not invalidate this
  // solution, Propagate() will not find domain reductions, no need to call it.
  int lp_solution_level_ = 0;
  bool lp_solution_is_set_ = false;
  bool lp_solution_is_integer_ = false;
  double lp_objective_;
  std::vector<double> lp_solution_;
  std::vector<double> lp_reduced_cost_;

  // If non-empty, this is the last known optimal lp solution at root-node. If
  // the variable bounds changed, or cuts where added, it is possible that this
  // solution is no longer optimal though.
  std::vector<double> level_zero_lp_solution_;

  // True if the last time we solved the exact same LP at level zero, no cuts
  // and no lazy constraints where added.
  bool lp_at_level_zero_is_final_ = false;

  // Same as lp_solution_ but this vector is indexed differently.
  LinearProgrammingConstraintLpSolution& expanded_lp_solution_;

  // Linear constraints cannot be created or modified after this is registered.
  bool lp_constraint_is_registered_ = false;

  std::vector<CutGenerator> cut_generators_;

  // Store some statistics for HeuristicLPReducedCostAverage().
  bool compute_reduced_cost_averages_ = false;
  int num_calls_since_reduced_cost_averages_reset_ = 0;
  std::vector<double> sum_cost_up_;
  std::vector<double> sum_cost_down_;
  std::vector<int> num_cost_up_;
  std::vector<int> num_cost_down_;
  std::vector<double> rc_scores_;

  // All the entries before rev_rc_start_ in the sorted positions correspond
  // to fixed variables and can be ignored.
  int rev_rc_start_ = 0;
  RevRepository<int> rc_rev_int_repository_;
  std::vector<std::pair<double, int>> positions_by_decreasing_rc_score_;

  // Defined as average number of nonbasic variables with zero reduced costs.
  IncrementalAverage average_degeneracy_;
  bool is_degenerate_ = false;

  // Used by the strong branching heuristic.
  int branching_frequency_ = 1;
  int64 count_since_last_branching_ = 0;

  // Sum of all simplex iterations performed by this class. This is useful to
  // test the incrementality and compare to other solvers.
  int64 total_num_simplex_iterations_ = 0;
};

// A class that stores which LP propagator is associated to each variable.
// We need to give the hash_map a name so it can be used as a singleton in our
// model.
//
// Important: only positive variable do appear here.
class LinearProgrammingDispatcher
    : public absl::flat_hash_map<IntegerVariable,
                                 LinearProgrammingConstraint*> {
 public:
  explicit LinearProgrammingDispatcher(Model* model) {}
};

// A class that stores the collection of all LP constraints in a model.
class LinearProgrammingConstraintCollection
    : public std::vector<LinearProgrammingConstraint*> {
 public:
  LinearProgrammingConstraintCollection() {}
};

// Cut generator for the circuit constraint, where in any feasible solution, the
// arcs that are present (variable at 1) must form a circuit through all the
// nodes of the graph. Self arc are forbidden in this case.
//
// In more generality, this currently enforce the resulting graph to be strongly
// connected. Note that we already assume basic constraint to be in the lp, so
// we do not add any cuts for components of size 1.
CutGenerator CreateStronglyConnectedGraphCutGenerator(
    int num_nodes, const std::vector<int>& tails, const std::vector<int>& heads,
    const std::vector<Literal>& literals, Model* model);

// Almost the same as CreateStronglyConnectedGraphCutGenerator() but for each
// components, computes the demand needed to serves it, and depending on whether
// it contains the depot (node zero) or not, compute the minimum number of
// vehicle that needs to cross the component border.
CutGenerator CreateCVRPCutGenerator(int num_nodes,
                                    const std::vector<int>& tails,
                                    const std::vector<int>& heads,
                                    const std::vector<Literal>& literals,
                                    const std::vector<int64>& demands,
                                    int64 capacity, Model* model);
}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_LINEAR_PROGRAMMING_CONSTRAINT_H_