intervals.h 26.3 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_INTERVALS_H_
#define OR_TOOLS_SAT_INTERVALS_H_

#include <functional>
#include <vector>

#include "absl/types/span.h"
#include "ortools/base/int_type.h"
#include "ortools/base/int_type_indexed_vector.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/sat/cp_constraints.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/integer_expr.h"
#include "ortools/sat/model.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/precedences.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"

namespace operations_research {
namespace sat {

DEFINE_INT_TYPE(IntervalVariable, int32);
const IntervalVariable kNoIntervalVariable(-1);

// This class maintains a set of intervals which correspond to three integer
// variables (start, end and size). It automatically registers with the
// PrecedencesPropagator the relation between the bounds of each interval and
// provides many helper functions to add precedences relation between intervals.
class IntervalsRepository {
 public:
  explicit IntervalsRepository(Model* model)
      : integer_trail_(model->GetOrCreate<IntegerTrail>()),
        precedences_(model->GetOrCreate<PrecedencesPropagator>()) {}

  // Returns the current number of intervals in the repository.
  // The interval will always be identified by an integer in [0, num_intervals).
  int NumIntervals() const { return start_vars_.size(); }

  // Functions to add a new interval to the repository.
  // - If size == kNoIntegerVariable, then the size is fixed to fixed_size.
  // - If is_present != kNoLiteralIndex, then this is an optional interval.
  IntervalVariable CreateInterval(IntegerVariable start, IntegerVariable end,
                                  IntegerVariable size, IntegerValue fixed_size,
                                  LiteralIndex is_present);

  // Returns whether or not a interval is optional and the associated literal.
  bool IsOptional(IntervalVariable i) const {
    return is_present_[i] != kNoLiteralIndex;
  }
  Literal IsPresentLiteral(IntervalVariable i) const {
    return Literal(is_present_[i]);
  }

  // The 3 integer variables associated to a interval.
  // Fixed size intervals will have a kNoIntegerVariable as size.
  //
  // Note: For an optional interval, the start/end variables are propagated
  // asssuming the interval is present. Because of that, these variables can
  // cross each other or have an empty domain. If any of this happen, then the
  // IsPresentLiteral() of this interval will be propagated to false.
  IntegerVariable SizeVar(IntervalVariable i) const { return size_vars_[i]; }
  IntegerVariable StartVar(IntervalVariable i) const { return start_vars_[i]; }
  IntegerVariable EndVar(IntervalVariable i) const { return end_vars_[i]; }

  // Return the minimum size of the given IntervalVariable.
  IntegerValue MinSize(IntervalVariable i) const {
    const IntegerVariable size_var = size_vars_[i];
    if (size_var == kNoIntegerVariable) return fixed_sizes_[i];
    return integer_trail_->LowerBound(size_var);
  }

  // Return the maximum size of the given IntervalVariable.
  IntegerValue MaxSize(IntervalVariable i) const {
    const IntegerVariable size_var = size_vars_[i];
    if (size_var == kNoIntegerVariable) return fixed_sizes_[i];
    return integer_trail_->UpperBound(size_var);
  }

  // Utility function that returns a vector will all intervals.
  std::vector<IntervalVariable> AllIntervals() const {
    std::vector<IntervalVariable> result;
    for (IntervalVariable i(0); i < NumIntervals(); ++i) {
      result.push_back(i);
    }
    return result;
  }

 private:
  // External classes needed.
  IntegerTrail* integer_trail_;
  PrecedencesPropagator* precedences_;

  // Literal indicating if the tasks is executed. Tasks that are always executed
  // will have a kNoLiteralIndex entry in this vector.
  gtl::ITIVector<IntervalVariable, LiteralIndex> is_present_;

  // The integer variables for each tasks.
  gtl::ITIVector<IntervalVariable, IntegerVariable> start_vars_;
  gtl::ITIVector<IntervalVariable, IntegerVariable> end_vars_;
  gtl::ITIVector<IntervalVariable, IntegerVariable> size_vars_;
  gtl::ITIVector<IntervalVariable, IntegerValue> fixed_sizes_;

  DISALLOW_COPY_AND_ASSIGN(IntervalsRepository);
};

// An helper struct to sort task by time. This is used by the
// SchedulingConstraintHelper but also by many scheduling propagators to sort
// tasks.
struct TaskTime {
  int task_index;
  IntegerValue time;
  bool operator<(TaskTime other) const { return time < other.time; }
  bool operator>(TaskTime other) const { return time > other.time; }
};

// Helper class shared by the propagators that manage a given list of tasks.
//
// One of the main advantage of this class is that it allows to share the
// vectors of tasks sorted by various criteria between propagator for a faster
// code.
class SchedulingConstraintHelper {
 public:
  // All the functions below refer to a task by its index t in the tasks
  // vector given at construction.
  SchedulingConstraintHelper(const std::vector<IntervalVariable>& tasks,
                             Model* model);

  // Temporary constructor.
  // The class will not be usable until ResetFromSubset() is called.
  //
  // TODO(user): Remove this. It is a hack because the disjunctive class needs
  // to fetch the maximum possible number of task at construction.
  SchedulingConstraintHelper(int num_tasks, Model* model);

  // Resets the class to the same state as if it was constructed with
  // the given subset of tasks from other.
  void ResetFromSubset(const SchedulingConstraintHelper& other,
                       absl::Span<const int> tasks);

  // Returns the number of task.
  int NumTasks() const { return start_vars_.size(); }

  // Sets the time direction to either forward/backward. This will impact all
  // the functions below.
  void SetTimeDirection(bool is_forward);

  // Helpers for the current bounds on the current task time window.
  //      [(duration-min)       ...      (duration-min)]
  //      ^             ^                ^             ^
  //   start-min     end-min          start-max     end-max
  //
  // Note that for tasks with variable durations, we don't necessarily have
  // duration-min between the XXX-min and XXX-max value.
  IntegerValue DurationMin(int t) const;
  IntegerValue DurationMax(int t) const;
  IntegerValue StartMin(int t) const;
  IntegerValue StartMax(int t) const;
  IntegerValue EndMin(int t) const;
  IntegerValue EndMax(int t) const;

  // In the presense of tasks with a variable duration, we do not necessarily
  // have start_min + duration_min = end_min, we can instead have a situation
  // like:
  //         |          |<- duration-min ->|
  //         ^          ^                  ^
  //        start-min   |                end-min
  //                    |
  // We define the "shifted start min" to be the right most time such that
  // we known that we must have min-duration "energy" to the right of it if the
  // task is present. Using it in our scheduling propagators allows to propagate
  // more in the presence of tasks with variable duration (or optional task
  // where we also do not necessarily have start_min + duration_min = end_min.
  //
  // To explain this shifted start min, one must use the AddEnergyAfterReason().
  IntegerValue ShiftedStartMin(int t) const;

  bool StartIsFixed(int t) const;
  bool EndIsFixed(int t) const;

  // Returns true if the corresponding fact is known for sure. A normal task is
  // always present. For optional task for which the presence is still unknown,
  // both of these function will return false.
  bool IsOptional(int t) const;
  bool IsPresent(int t) const;
  bool IsAbsent(int t) const;

  // Sorts and returns the tasks in corresponding order at the time of the call.
  // Note that we do not mean strictly-increasing/strictly-decreasing, there
  // will be duplicate time values in these vectors.
  //
  // TODO(user): we could merge the first loop of IncrementalSort() with the
  // loop that fill TaskTime.time at each call.
  const std::vector<TaskTime>& TaskByIncreasingStartMin();
  const std::vector<TaskTime>& TaskByIncreasingEndMin();
  const std::vector<TaskTime>& TaskByDecreasingStartMax();
  const std::vector<TaskTime>& TaskByDecreasingEndMax();
  const std::vector<TaskTime>& TaskByIncreasingShiftedStartMin();

  // Functions to clear and then set the current reason.
  void ClearReason();
  void AddPresenceReason(int t);
  void AddDurationMinReason(int t);
  void AddDurationMinReason(int t, IntegerValue lower_bound);
  void AddStartMinReason(int t, IntegerValue lower_bound);
  void AddStartMaxReason(int t, IntegerValue upper_bound);
  void AddEndMinReason(int t, IntegerValue lower_bound);
  void AddEndMaxReason(int t, IntegerValue upper_bound);
  void AddEnergyAfterReason(int t, IntegerValue energy_min, IntegerValue time);

  // Adds the reason why task "before" must be before task "after".
  // That is StartMax(before) < EndMin(after).
  void AddReasonForBeingBefore(int before, int after);

  // It is also possible to directly manipulates the underlying reason vectors
  // that will be used when pushing something.
  std::vector<Literal>* MutableLiteralReason() { return &literal_reason_; }
  std::vector<IntegerLiteral>* MutableIntegerReason() {
    return &integer_reason_;
  }

  // Push something using the current reason. Note that IncreaseStartMin() will
  // also increase the end-min, and DecreaseEndMax() will also decrease the
  // start-max.
  //
  // Important: IncreaseStartMin() and DecreaseEndMax() can be called on an
  // optional interval whose presence is still unknown and push a bound
  // conditionned on its presence. The functions will do the correct thing
  // depending on whether or not the start_min/end_max are optional variables
  // whose presence implies the interval presence.
  ABSL_MUST_USE_RESULT bool IncreaseStartMin(int t, IntegerValue new_min_start);
  ABSL_MUST_USE_RESULT bool DecreaseEndMax(int t, IntegerValue new_max_end);
  ABSL_MUST_USE_RESULT bool PushTaskAbsence(int t);
  ABSL_MUST_USE_RESULT bool PushIntegerLiteral(IntegerLiteral bound);
  ABSL_MUST_USE_RESULT bool ReportConflict();
  ABSL_MUST_USE_RESULT bool PushIntegerLiteralIfTaskPresent(
      int t, IntegerLiteral bound);

  // Returns the underlying integer variables.
  const std::vector<IntegerVariable>& StartVars() const { return start_vars_; }
  const std::vector<IntegerVariable>& EndVars() const { return end_vars_; }
  const std::vector<IntegerVariable>& DurationVars() const {
    return duration_vars_;
  }

  // Registers the given propagator id to be called if any of the tasks
  // in this class change. Note that we do not watch duration max though.
  void WatchAllTasks(int id, GenericLiteralWatcher* watcher,
                     bool watch_start_max = true,
                     bool watch_end_max = true) const;

  // Manages the other helper (used by the diffn constraint).
  //
  // For each interval appearing in a reason on this helper, another reason
  // will be added. This other reason specifies that on the other helper, the
  // corresponding interval overlaps 'event'.
  void SetOtherHelper(SchedulingConstraintHelper* other_helper,
                      IntegerValue event) {
    CHECK(other_helper != nullptr);
    other_helper_ = other_helper;
    event_for_other_helper_ = event;
  }

  void ClearOtherHelper() { other_helper_ = nullptr; }

  // Adds to this helper reason all the explanation of the other helper.
  // This checks that other_helper_ is null.
  //
  // This is used in the 2D energetic reasoning in the diffn constraint.
  void ImportOtherReasons(const SchedulingConstraintHelper& other_helper);

 private:
  void InitSortedVectors();

  // Internal function for IncreaseStartMin()/DecreaseEndMax().
  bool PushIntervalBound(int t, IntegerLiteral lit);

  // This will be called on any interval that is part of a reason or
  // a bound push. Since the last call to ClearReason(), for each unique
  // t, we will add once to other_helper_ the reason for t containing
  // the point event_for_other_helper_.
  void AddOtherReason(int t);

  // Import the reasons on the other helper into this helper.
  void ImportOtherReasons();

  Trail* trail_;
  IntegerTrail* integer_trail_;
  PrecedencesPropagator* precedences_;

  // The current direction of time, true for forward, false for backward.
  bool current_time_direction_ = true;

  // All the underlying variables of the tasks.
  // The vectors are indexed by the task index t.
  std::vector<IntegerVariable> start_vars_;
  std::vector<IntegerVariable> end_vars_;
  std::vector<IntegerVariable> duration_vars_;
  std::vector<IntegerValue> fixed_durations_;
  std::vector<LiteralIndex> reason_for_presence_;

  // The negation of the start/end variable so that SetTimeDirection()
  // can do its job in O(1) instead of calling NegationOf() on each entry.
  std::vector<IntegerVariable> minus_start_vars_;
  std::vector<IntegerVariable> minus_end_vars_;

  // Sorted vectors returned by the TasksBy*() functions.
  std::vector<TaskTime> task_by_increasing_start_min_;
  std::vector<TaskTime> task_by_increasing_end_min_;
  std::vector<TaskTime> task_by_decreasing_start_max_;
  std::vector<TaskTime> task_by_decreasing_end_max_;

  std::vector<TaskTime> task_by_increasing_shifted_start_min_;
  std::vector<TaskTime> task_by_negated_shifted_end_max_;
  int64 shifted_start_min_timestamp_ = -1;
  int64 negated_shifted_end_max_timestamp_ = -1;

  // Reason vectors.
  std::vector<Literal> literal_reason_;
  std::vector<IntegerLiteral> integer_reason_;

  // Optional 'slave' helper used in the diffn constraint.
  SchedulingConstraintHelper* other_helper_ = nullptr;
  IntegerValue event_for_other_helper_;
  std::vector<bool> already_added_to_other_reasons_;
};

// =============================================================================
// SchedulingConstraintHelper inlined functions.
// =============================================================================

inline IntegerValue SchedulingConstraintHelper::DurationMin(int t) const {
  return duration_vars_[t] == kNoIntegerVariable
             ? fixed_durations_[t]
             : integer_trail_->LowerBound(duration_vars_[t]);
}

inline IntegerValue SchedulingConstraintHelper::DurationMax(int t) const {
  return duration_vars_[t] == kNoIntegerVariable
             ? fixed_durations_[t]
             : integer_trail_->UpperBound(duration_vars_[t]);
}

inline IntegerValue SchedulingConstraintHelper::StartMin(int t) const {
  return integer_trail_->LowerBound(start_vars_[t]);
}

inline IntegerValue SchedulingConstraintHelper::StartMax(int t) const {
  return integer_trail_->UpperBound(start_vars_[t]);
}

inline IntegerValue SchedulingConstraintHelper::EndMin(int t) const {
  return integer_trail_->LowerBound(end_vars_[t]);
}

inline IntegerValue SchedulingConstraintHelper::EndMax(int t) const {
  return integer_trail_->UpperBound(end_vars_[t]);
}

// for optional interval, we don't necessarily have start + duration = end.
inline IntegerValue SchedulingConstraintHelper::ShiftedStartMin(int t) const {
  return std::max(StartMin(t), EndMin(t) - DurationMin(t));
}

inline bool SchedulingConstraintHelper::StartIsFixed(int t) const {
  return StartMin(t) == StartMax(t);
}

inline bool SchedulingConstraintHelper::EndIsFixed(int t) const {
  return EndMin(t) == EndMax(t);
}

inline bool SchedulingConstraintHelper::IsOptional(int t) const {
  return reason_for_presence_[t] != kNoLiteralIndex;
}

inline bool SchedulingConstraintHelper::IsPresent(int t) const {
  if (reason_for_presence_[t] == kNoLiteralIndex) return true;
  return trail_->Assignment().LiteralIsTrue(Literal(reason_for_presence_[t]));
}

inline bool SchedulingConstraintHelper::IsAbsent(int t) const {
  if (reason_for_presence_[t] == kNoLiteralIndex) return false;
  return trail_->Assignment().LiteralIsFalse(Literal(reason_for_presence_[t]));
}

inline void SchedulingConstraintHelper::ClearReason() {
  integer_reason_.clear();
  literal_reason_.clear();
  if (other_helper_) {
    other_helper_->ClearReason();
    already_added_to_other_reasons_.assign(NumTasks(), false);
  }
}

inline void SchedulingConstraintHelper::AddPresenceReason(int t) {
  DCHECK(IsPresent(t));
  AddOtherReason(t);
  if (reason_for_presence_[t] != kNoLiteralIndex) {
    literal_reason_.push_back(Literal(reason_for_presence_[t]).Negated());
  }
}

inline void SchedulingConstraintHelper::AddDurationMinReason(int t) {
  AddOtherReason(t);
  if (duration_vars_[t] != kNoIntegerVariable) {
    integer_reason_.push_back(
        integer_trail_->LowerBoundAsLiteral(duration_vars_[t]));
  }
}

inline void SchedulingConstraintHelper::AddDurationMinReason(
    int t, IntegerValue lower_bound) {
  AddOtherReason(t);
  if (duration_vars_[t] != kNoIntegerVariable) {
    DCHECK_GE(DurationMin(t), lower_bound);
    integer_reason_.push_back(
        IntegerLiteral::GreaterOrEqual(duration_vars_[t], lower_bound));
  }
}

inline void SchedulingConstraintHelper::AddStartMinReason(
    int t, IntegerValue lower_bound) {
  DCHECK_GE(StartMin(t), lower_bound);
  AddOtherReason(t);
  integer_reason_.push_back(
      IntegerLiteral::GreaterOrEqual(start_vars_[t], lower_bound));
}

inline void SchedulingConstraintHelper::AddStartMaxReason(
    int t, IntegerValue upper_bound) {
  DCHECK_LE(StartMax(t), upper_bound);
  AddOtherReason(t);
  integer_reason_.push_back(
      IntegerLiteral::LowerOrEqual(start_vars_[t], upper_bound));
}

inline void SchedulingConstraintHelper::AddEndMinReason(
    int t, IntegerValue lower_bound) {
  AddOtherReason(t);
  if (EndMin(t) < lower_bound) {
    // This might happen if we used for the end_min the max between end_min
    // and start_min + duration_min. That is, the end_min assuming the task is
    // present.
    const IntegerValue duration_min = DurationMin(t);
    if (duration_vars_[t] != kNoIntegerVariable) {
      integer_reason_.push_back(
          IntegerLiteral::GreaterOrEqual(duration_vars_[t], duration_min));
    }
    integer_reason_.push_back(IntegerLiteral::GreaterOrEqual(
        start_vars_[t], lower_bound - duration_min));
    return;
  }
  integer_reason_.push_back(
      IntegerLiteral::GreaterOrEqual(end_vars_[t], lower_bound));
}

inline void SchedulingConstraintHelper::AddEndMaxReason(
    int t, IntegerValue upper_bound) {
  DCHECK_LE(EndMax(t), upper_bound);
  AddOtherReason(t);
  integer_reason_.push_back(
      IntegerLiteral::LowerOrEqual(end_vars_[t], upper_bound));
}

inline void SchedulingConstraintHelper::AddEnergyAfterReason(
    int t, IntegerValue energy_min, IntegerValue time) {
  AddOtherReason(t);
  if (StartMin(t) >= time) {
    integer_reason_.push_back(
        IntegerLiteral::GreaterOrEqual(start_vars_[t], time));
  } else {
    integer_reason_.push_back(
        IntegerLiteral::GreaterOrEqual(end_vars_[t], time + energy_min));
  }
  if (duration_vars_[t] != kNoIntegerVariable) {
    integer_reason_.push_back(
        IntegerLiteral::GreaterOrEqual(duration_vars_[t], energy_min));
  }
}

// =============================================================================
// Model based functions.
// =============================================================================

inline std::function<IntegerVariable(const Model&)> StartVar(
    IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->StartVar(v);
  };
}

inline std::function<IntegerVariable(const Model&)> EndVar(IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->EndVar(v);
  };
}

inline std::function<IntegerVariable(const Model&)> SizeVar(
    IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->SizeVar(v);
  };
}

inline std::function<int64(const Model&)> MinSize(IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->MinSize(v).value();
  };
}

inline std::function<int64(const Model&)> MaxSize(IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->MaxSize(v).value();
  };
}

inline std::function<bool(const Model&)> IsOptional(IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->IsOptional(v);
  };
}

inline std::function<Literal(const Model&)> IsPresentLiteral(
    IntervalVariable v) {
  return [=](const Model& model) {
    return model.Get<IntervalsRepository>()->IsPresentLiteral(v);
  };
}

inline std::function<IntervalVariable(Model*)> NewInterval(int64 min_start,
                                                           int64 max_end,
                                                           int64 size) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_start, max_end)), kNoIntegerVariable,
        IntegerValue(size), kNoLiteralIndex);
  };
}

inline std::function<IntervalVariable(Model*)> NewInterval(
    IntegerVariable start, IntegerVariable end, IntegerVariable size) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        start, end, size, IntegerValue(0), kNoLiteralIndex);
  };
}

inline std::function<IntervalVariable(Model*)> NewIntervalWithVariableSize(
    int64 min_start, int64 max_end, int64 min_size, int64 max_size) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_size, max_size)), IntegerValue(0),
        kNoLiteralIndex);
  };
}

inline std::function<IntervalVariable(Model*)> NewOptionalInterval(
    int64 min_start, int64 max_end, int64 size, Literal is_present) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_start, max_end)), kNoIntegerVariable,
        IntegerValue(size), is_present.Index());
  };
}

inline std::function<IntervalVariable(Model*)>
NewOptionalIntervalWithOptionalVariables(int64 min_start, int64 max_end,
                                         int64 size, Literal is_present) {
  return [=](Model* model) {
    // Note that we need to mark the optionality first.
    const IntegerVariable start =
        model->Add(NewIntegerVariable(min_start, max_end));
    const IntegerVariable end =
        model->Add(NewIntegerVariable(min_start, max_end));
    auto* integer_trail = model->GetOrCreate<IntegerTrail>();
    integer_trail->MarkIntegerVariableAsOptional(start, is_present);
    integer_trail->MarkIntegerVariableAsOptional(end, is_present);
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        start, end, kNoIntegerVariable, IntegerValue(size), is_present.Index());
  };
}

inline std::function<IntervalVariable(Model*)> NewOptionalInterval(
    IntegerVariable start, IntegerVariable end, IntegerVariable size,
    Literal is_present) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        start, end, size, IntegerValue(0), is_present.Index());
  };
}

inline std::function<IntervalVariable(Model*)>
NewOptionalIntervalWithVariableSize(int64 min_start, int64 max_end,
                                    int64 min_size, int64 max_size,
                                    Literal is_present) {
  return [=](Model* model) {
    return model->GetOrCreate<IntervalsRepository>()->CreateInterval(
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_start, max_end)),
        model->Add(NewIntegerVariable(min_size, max_size)), IntegerValue(0),
        is_present.Index());
  };
}

// This requires that all the alternatives are optional tasks.
inline std::function<void(Model*)> IntervalWithAlternatives(
    IntervalVariable master, const std::vector<IntervalVariable>& members) {
  return [=](Model* model) {
    IntervalsRepository* intervals = model->GetOrCreate<IntervalsRepository>();

    std::vector<Literal> presences;
    std::vector<IntegerValue> durations;

    // Create an "exactly one executed" constraint on the alternatives.
    std::vector<LiteralWithCoeff> sat_ct;
    for (const IntervalVariable member : members) {
      CHECK(intervals->IsOptional(member));
      const Literal is_present = intervals->IsPresentLiteral(member);
      sat_ct.push_back({is_present, Coefficient(1)});
      model->Add(
          Equality(model->Get(StartVar(master)), model->Get(StartVar(member))));
      model->Add(
          Equality(model->Get(EndVar(master)), model->Get(EndVar(member))));

      // TODO(user): IsOneOf() only work for members with fixed size.
      // Generalize to an "int_var_element" constraint.
      CHECK_EQ(intervals->SizeVar(member), kNoIntegerVariable);
      presences.push_back(is_present);
      durations.push_back(intervals->MinSize(member));
    }
    if (intervals->SizeVar(master) != kNoIntegerVariable) {
      model->Add(IsOneOf(intervals->SizeVar(master), presences, durations));
    }
    model->Add(BooleanLinearConstraint(1, 1, &sat_ct));

    // Propagate from the candidate bounds to the master interval ones.
    {
      std::vector<IntegerVariable> starts;
      starts.reserve(members.size());
      for (const IntervalVariable member : members) {
        starts.push_back(intervals->StartVar(member));
      }
      model->Add(
          PartialIsOneOfVar(intervals->StartVar(master), starts, presences));
    }
    {
      std::vector<IntegerVariable> ends;
      ends.reserve(members.size());
      for (const IntervalVariable member : members) {
        ends.push_back(intervals->EndVar(member));
      }
      model->Add(PartialIsOneOfVar(intervals->EndVar(master), ends, presences));
    }
  };
}

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_INTERVALS_H_