feasibility_pump.h 9 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_SAT_FEASIBILITY_PUMP_H_
#define OR_TOOLS_SAT_FEASIBILITY_PUMP_H_

#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_data_utils.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/sat/cp_model_loader.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
24
#include "ortools/sat/sat_solver.h"
Valentin Platzgummer's avatar
Valentin Platzgummer committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#include "ortools/sat/synchronization.h"
#include "ortools/sat/util.h"

namespace operations_research {
namespace sat {

class FeasibilityPump {
 public:
  explicit FeasibilityPump(Model* model);
  ~FeasibilityPump();

  typedef glop::RowIndex ConstraintIndex;

  void SetMaxFPIterations(int max_iter) {
    max_fp_iterations_ = std::max(1, max_iter);
  }

  // Add a new linear constraint to this LP.
  void AddLinearConstraint(const LinearConstraint& ct);

  // Set the coefficient of the variable in the objective. Calling it twice will
  // overwrite the previous value. Note that this doesn't set the objective
  // coefficient if the variable doesn't appear in any constraints. So this has
  // to be called after all the constraints are added.
  void SetObjectiveCoefficient(IntegerVariable ivar, IntegerValue coeff);

  // Returns the LP value of a variable in the current
  // solution. These functions should only be called when HasSolution() is true.
  bool HasLPSolution() const { return lp_solution_is_set_; }
  double LPSolutionObjectiveValue() const { return lp_objective_; }
  double GetLPSolutionValue(IntegerVariable variable) const;
  bool LPSolutionIsInteger() const { return lp_solution_is_integer_; }
  double LPSolutionFractionality() const { return lp_solution_fractionality_; }

  // Returns the Integer solution value of a variable in the current rounded
  // solution. These functions should only be called when HasIntegerSolution()
  // is true.
  bool HasIntegerSolution() const { return integer_solution_is_set_; }
  int64 IntegerSolutionObjectiveValue() const {
    return integer_solution_objective_;
  }
  bool IntegerSolutionIsFeasible() const {
    return integer_solution_is_feasible_;
  }
  int64 GetIntegerSolutionValue(IntegerVariable variable) const;

71 72
  // Returns false if the model is proven to be infeasible.
  bool Solve();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
73 74 75 76 77

 private:
  // Solve the LP, returns false if something went wrong in the LP solver.
  bool SolveLp();

78 79 80
  // Calls the specified rounding method in the parameters. Returns false if the
  // rounding couldn't be finished.
  bool Round();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
81

82 83 84
  // Round the fractional LP solution values to nearest integer values. This
  // rounding always finishes so always returns true.
  bool NearestIntegerRounding();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
85 86 87 88 89 90 91 92 93

  // Counts the number of up and down locks as defined below.
  // #up_locks = #upper bounded constraints with positive coeff for var
  //           + #lower bounded constraints with negative coeff for var.
  // #down_locks = #lower bounded constraints with positive coeff for var
  //             + #upper bounded constraints with negative coeff for var.
  // Rounds the variable in the direction of lesser locks. When the
  // fractionality is low (less than 0.1), this reverts to nearest integer
  // rounding to avoid rounding almost integer values in wrong direction.
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  // This rounding always finishes so always returns true.
  bool LockBasedRounding();

  // Similar to LockBasedRounding except this only considers locks of active
  // constraints.
  bool ActiveLockBasedRounding();

  // This is expensive rounding algorithm. We round variables one by one and
  // propagate the bounds in between. If none of the rounded values fall in
  // the continuous domain specified by lower and upper bound, we use the
  // current lower/upper bound (whichever one is closest) instead of rounding
  // the fractional lp solution value. If both the rounded values are in the
  // domain, we round to nearest integer. This idea was presented in the paper
  // "Feasibility pump 2.0" (2009) by Matteo Fischetti, Domenico Salvagnin.
  //
  // This rounding might not finish either because the time limit is reached or
  // the model is detected to be unsat. Returns false in those cases.
  bool PropagationRounding();
Valentin Platzgummer's avatar
Valentin Platzgummer committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  void FillIntegerSolutionStats();

  // Loads the lp_data_.
  void InitializeWorkingLP();

  // Changes the LP objective and bounds of the norm constraints so the new
  // objective also tries to minimize the distance to the rounded solution.
  void L1DistanceMinimize();

  // Stores the solutions in the shared repository. Stores LP solution if it is
  // integer and stores the integer solution if it is feasible.
  void MaybePushToRepo();

  void PrintStats();

  // Returns the variable value on the same scale as the CP variable value.
  double GetVariableValueAtCpScale(glop::ColIndex var);

  // Shortcut for an integer linear expression type.
  using LinearExpression = std::vector<std::pair<glop::ColIndex, IntegerValue>>;

  // Gets or creates an LP variable that mirrors a model variable.
  // The variable should be a positive reference.
  glop::ColIndex GetOrCreateMirrorVariable(IntegerVariable positive_variable);

  // Updates the bounds of the LP variables from the CP bounds.
  void UpdateBoundsOfLpVariables();

  // This epsilon is related to the precision of the value returned by the LP
  // once they have been scaled back into the CP domain. So for large domain or
  // cost coefficient, we may have some issues.
  static const double kCpEpsilon;

  // Initial problem in integer form.
  // We always sort the inner vectors by increasing glop::ColIndex.
  struct LinearConstraintInternal {
    IntegerValue lb;
    IntegerValue ub;
    LinearExpression terms;
  };
  LinearExpression integer_objective_;
  IntegerValue objective_infinity_norm_ = IntegerValue(0);
  double objective_normalization_factor_ = 0.0;
  double mixing_factor_ = 1.0;

  gtl::ITIVector<glop::RowIndex, LinearConstraintInternal> integer_lp_;
  int model_vars_size_ = 0;

  // Underlying LP solver API.
  glop::LinearProgram lp_data_;
  glop::RevisedSimplex simplex_;

  glop::ColMapping norm_variables_;
  glop::ColToRowMapping norm_lhs_constraints_;
  glop::ColToRowMapping norm_rhs_constraints_;

  // For the scaling.
  glop::LpScalingHelper scaler_;

  // Structures used for mirroring IntegerVariables inside the underlying LP
  // solver: an integer variable var is mirrored by mirror_lp_variable_[var].
  // Note that these indices are dense in [0, mirror_lp_variable_.size()] so
  // they can be used as vector indices.
  std::vector<IntegerVariable> integer_variables_;
  absl::flat_hash_map<IntegerVariable, glop::ColIndex> mirror_lp_variable_;

  // True if the variable was binary before we apply scaling.
  std::vector<bool> var_is_binary_;

182 183
  // The following lock information is computed only once.
  // Number of constraints restricting variable to take higher (resp. lower)
Valentin Platzgummer's avatar
Valentin Platzgummer committed
184
  // values.
185 186
  std::vector<int> var_up_locks_;
  std::vector<int> var_down_locks_;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
187 188 189 190 191 192 193 194 195 196 197 198

  // We need to remember what to optimize if an objective is given, because
  // then we will switch the objective between feasibility and optimization.
  bool objective_is_defined_ = false;

  // Singletons from Model.
  const SatParameters& sat_parameters_;
  TimeLimit* time_limit_;
  IntegerTrail* integer_trail_;
  Trail* trail_;
  IntegerEncoder* integer_encoder_;
  SharedIncompleteSolutionManager* incomplete_solutions_;
199 200
  SatSolver* sat_solver_;
  IntegerDomains* domains_;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  const CpModelMapping* mapping_;

  // Last OPTIMAL/Feasible solution found by a call to the underlying LP solver.
  bool lp_solution_is_set_ = false;
  bool lp_solution_is_integer_ = false;
  double lp_objective_;
  std::vector<double> lp_solution_;
  std::vector<double> best_lp_solution_;
  // We use max fractionality of all variables.
  double lp_solution_fractionality_;

  // Rounded Integer solution. This might not be feasible.
  bool integer_solution_is_set_ = false;
  bool integer_solution_is_feasible_ = false;
  int64 integer_solution_objective_;
  std::vector<int64> integer_solution_;
  std::vector<int64> best_integer_solution_;
  int num_infeasible_constraints_;
  // We use max infeasibility of all constraints.
  int64 integer_solution_infeasibility_;

  // Sum of all simplex iterations performed by this class. This is useful to
  // test the incrementality and compare to other solvers.
  int64 total_num_simplex_iterations_ = 0;

  // TODO(user): Tune default value. Expose as parameter.
  int max_fp_iterations_ = 20;
228 229

  bool model_is_unsat_ = false;
Valentin Platzgummer's avatar
Valentin Platzgummer committed
230 231 232 233 234 235
};

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_FEASIBILITY_PUMP_H_