cp_model.h 29.2 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/**
 * \file
 * This file implements a wrapper around the CP-SAT model proto.
 *
 * Here is a minimal example that shows how to create a model, solve it, and
 * print out the solution.
 * \code
 CpModelBuilder cp_model;
 Domain all_animals(0, 20);
 IntVar rabbits = cp_model.NewIntVar(all_animals).WithName("rabbits");
 IntVar pheasants = cp_model.NewIntVar(all_animals).WithName("pheasants");

 cp_model.AddEquality(LinearExpr::Sum({rabbits, pheasants}), 20);
 cp_model.AddEquality(LinearExpr::ScalProd({rabbits, pheasants}, {4, 2}), 56);

 const CpSolverResponse response = Solve(cp_model.Build());
 if (response.status() == CpSolverStatus::FEASIBLE) {
   LOG(INFO) << SolutionIntegerValue(response, rabbits)
             << " rabbits, and " << SolutionIntegerValue(response, pheasants)
             << " pheasants.";
 }
 \endcode
 */

#ifndef OR_TOOLS_SAT_CP_MODEL_H_
#define OR_TOOLS_SAT_CP_MODEL_H_

#include <string>

#include "absl/container/flat_hash_map.h"
#include "absl/types/span.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

class CpModelBuilder;
class LinearExpr;
class IntVar;

/**
 *  A Boolean variable.
 *
 * This class wraps an IntegerVariableProto with domain [0, 1].
 * It supports the logical negation (Not).
 *
 * This can only be constructed via \c CpModelBuilder.NewBoolVar().
 */
class BoolVar {
 public:
  BoolVar();

  /// Sets the name of the variable.
  BoolVar WithName(const std::string& name);

  /// Returns the name of the variable.
  const std::string& Name() const { return Proto().name(); }

  /// Returns the logical negation of the current Boolean variable.
  BoolVar Not() const { return BoolVar(NegatedRef(index_), cp_model_); }

  /// Equality test with another boolvar.
  bool operator==(const BoolVar& other) const {
    return other.cp_model_ == cp_model_ && other.index_ == index_;
  }

  /// Dis-Equality test.
  bool operator!=(const BoolVar& other) const {
    return other.cp_model_ != cp_model_ || other.index_ != index_;
  }

  /// Debug string.
  std::string DebugString() const;

  /// Returns the underlying protobuf object (useful for testing).
  const IntegerVariableProto& Proto() const {
    return cp_model_->variables(index_);
  }

  /// Returns the mutable underlying protobuf object (useful for model edition).
  IntegerVariableProto* MutableProto() const {
    return cp_model_->mutable_variables(index_);
  }

  /**
   * Returns the index of the variable in the model.
   *
   * If the variable is the negation of another variable v, its index is
   * -v.index() - 1.
   */
  int index() const { return index_; }

 private:
  friend class CircuitConstraint;
  friend class Constraint;
  friend class CpModelBuilder;
  friend class IntVar;
  friend class IntervalVar;
  friend class MultipleCircuitConstraint;
  friend class LinearExpr;
  friend class ReservoirConstraint;
  friend bool SolutionBooleanValue(const CpSolverResponse& r, BoolVar x);

  BoolVar(int index, CpModelProto* cp_model);

  CpModelProto* cp_model_ = nullptr;
  int index_ = kint32min;
};

std::ostream& operator<<(std::ostream& os, const BoolVar& var);

/**
 *  A convenient wrapper so we can write Not(x) instead of x.Not() which is
 * sometimes clearer.
 */
BoolVar Not(BoolVar x);

/**
 * An integer variable.
 *
 * This class wraps an IntegerVariableProto.
 * This can only be constructed via \c CpModelBuilder.NewIntVar().
 *
 * Note that a BoolVar can be used in any place that accept an
 * IntVar via an implicit cast. It will simply take the value
 * 0 (when false) or 1 (when true).
 */
class IntVar {
 public:
  IntVar();

  /// Implicit cast BoolVar -> IntVar.
  IntVar(const BoolVar& var);  // NOLINT(runtime/explicit)

  /// Cast  IntVar -> BoolVar.
  /// Checks that the domain of the var is within {0,1}.
  BoolVar ToBoolVar() const;

  /// Sets the name of the variable.
  IntVar WithName(const std::string& name);

  /// Returns the name of the variable (or the empty string if not set).
  const std::string& Name() const { return Proto().name(); }

  /// Adds a constant value to an integer variable and returns a linear
  /// expression.
  LinearExpr AddConstant(int64 value) const;

  /// Equality test with another IntVar.
  bool operator==(const IntVar& other) const {
    return other.cp_model_ == cp_model_ && other.index_ == index_;
  }

  /// Difference test with anpther IntVar.
  bool operator!=(const IntVar& other) const {
    return other.cp_model_ != cp_model_ || other.index_ != index_;
  }

  /// Returns a debug string.
  std::string DebugString() const;

  /// Returns the underlying protobuf object (useful for testing).
  const IntegerVariableProto& Proto() const {
    return cp_model_->variables(index_);
  }

  /// Returns the mutable underlying protobuf object (useful for model edition).
  IntegerVariableProto* MutableProto() const {
    return cp_model_->mutable_variables(index_);
  }

  /// Returns the index of the variable in the model.
  int index() const { return index_; }

 private:
  friend class BoolVar;
  friend class CpModelBuilder;
  friend class CumulativeConstraint;
  friend class LinearExpr;
  friend class IntervalVar;
  friend class ReservoirConstraint;
  friend int64 SolutionIntegerValue(const CpSolverResponse& r,
                                    const LinearExpr& expr);
  friend int64 SolutionIntegerMin(const CpSolverResponse& r, IntVar x);
  friend int64 SolutionIntegerMax(const CpSolverResponse& r, IntVar x);

  IntVar(int index, CpModelProto* cp_model);

  CpModelProto* cp_model_ = nullptr;
  int index_ = kint32min;
};

std::ostream& operator<<(std::ostream& os, const IntVar& var);

/**
 * A dedicated container for linear expressions.
 *
 * This class helps building and manipulating linear expressions.
 * With the use of implicit constructors, it can accept integer values, Boolean
 * and Integer variables. Note that Not(x) will be silently transformed into
 * 1 - x when added to the linear expression.
 *
 * Furthermore, static methods allows sums and scalar products, with or without
 * an additional constant.
 *
 * Usage:
 * \code
  CpModelBuilder cp_model;
  IntVar x = model.NewIntVar(0, 10, "x");
  IntVar y = model.NewIntVar(0, 10, "y");
  BoolVar b = model.NewBoolVar().WithName("b");
  BoolVar c = model.NewBoolVar().WithName("c");
  LinearExpr e1(x);  // e1 = x.
  LinearExpr e2 = LinearExpr::Sum({x, y}).AddConstant(5);  // e2 = x + y + 5;
  LinearExpr e3 = LinearExpr::ScalProd({x, y}, {2, -1});  // e3 = 2 * x - y.
  LinearExpr e4(b);  // e4 = b.
  LinearExpr e5(b.Not());  // e5 = 1 - b.
  // If passing a std::vector<BoolVar>, a specialized method must be called.
  std::vector<BoolVar> bools = {b, Not(c)};
  LinearExpr e6 = LinearExpr::BooleanSum(bools);  // e6 = b + 1 - c;
  // e7 = -3 * b + 1 - c;
  LinearExpr e7 = LinearExpr::BooleanScalProd(bools, {-3, 1});
  \endcode
 *  This can be used implicitly in some of the CpModelBuilder methods.
 * \code
  cp_model.AddGreaterThan(x, 5);  // x > 5
  cp_model.AddEquality(x, LinearExpr(y).AddConstant(5));  // x == y + 5
  \endcode
  */
class LinearExpr {
 public:
  LinearExpr();

  /**
   * Constructs a linear expression from a Boolean variable.
   *
   *  It deals with logical negation correctly.
   */
  LinearExpr(BoolVar var);  // NOLINT(runtime/explicit)

  /// Constructs a linear expression from an integer variable.
  LinearExpr(IntVar var);  // NOLINT(runtime/explicit)

  /// Constructs a constant linear expression.
  LinearExpr(int64 constant);  // NOLINT(runtime/explicit)

  /// Adds a constant value to the linear expression.
  LinearExpr& AddConstant(int64 value);

  /// Adds a single integer variable to the linear expression.
  void AddVar(IntVar var);

  /// Adds a term (var * coeff) to the linear expression.
  void AddTerm(IntVar var, int64 coeff);

  /// Constructs the sum of a list of variables.
  static LinearExpr Sum(absl::Span<const IntVar> vars);

  /// Constructs the scalar product of variables and coefficients.
  static LinearExpr ScalProd(absl::Span<const IntVar> vars,
                             absl::Span<const int64> coeffs);

  /// Constructs the sum of a list of Booleans.
  static LinearExpr BooleanSum(absl::Span<const BoolVar> vars);

  /// Constructs the scalar product of Booleans and coefficients.
  static LinearExpr BooleanScalProd(absl::Span<const BoolVar> vars,
                                    absl::Span<const int64> coeffs);
  /// Construncts var * coefficient.
  static LinearExpr Term(IntVar var, int64 coefficient);

  /// Returns the vector of variables.
  const std::vector<IntVar>& variables() const { return variables_; }

  /// Returns the vector of coefficients.
  const std::vector<int64>& coefficients() const { return coefficients_; }

  /// Returns the constant term.
  int64 constant() const { return constant_; }

  // TODO(user): LinearExpr.DebugString() and operator<<.

 private:
  std::vector<IntVar> variables_;
  std::vector<int64> coefficients_;
  int64 constant_ = 0;
};

/**
 * Represents a Interval variable.
 *
 * An interval variable is both a constraint and a variable. It is defined by
 * three integer variables: start, size, and end.
 *
 * It is a constraint because, internally, it enforces that start + size == end.
 *
 * It is also a variable as it can appear in specific scheduling constraints:
 * NoOverlap, NoOverlap2D, Cumulative.
 *
 * Optionally, a presence literal can be added to this constraint. This presence
 * literal is understood by the same constraints. These constraints ignore
 * interval variables with precence literals assigned to false. Conversely,
 * these constraints will also set these presence literals to false if they
 * cannot fit these intervals into the schedule.
 *
 * It can only be constructed via \c CpModelBuilder.NewIntervalVar().
 */
class IntervalVar {
 public:
  /// Default ctor.
  IntervalVar();

  /// Sets the name of the variable.
  IntervalVar WithName(const std::string& name);

  /// Returns the name of the interval (or the empty string if not set).
  std::string Name() const;

  /// Returns the start variable.
  IntVar StartVar() const;

  /// Returns the size variable.
  IntVar SizeVar() const;

  /// Returns the end variable.
  IntVar EndVar() const;

  /**
   * Returns a BoolVar indicating the presence of this interval.
   *
   * It returns \c CpModelBuilder.TrueVar() if the interval is not optional.
   */
  BoolVar PresenceBoolVar() const;

  /// Equality test with another interval variable.
  bool operator==(const IntervalVar& other) const {
    return other.cp_model_ == cp_model_ && other.index_ == index_;
  }

  /// Difference test with another interval variable.
  bool operator!=(const IntervalVar& other) const {
    return other.cp_model_ != cp_model_ || other.index_ != index_;
  }

  /// Returns a debug string.
  std::string DebugString() const;

  /// Returns the underlying protobuf object (useful for testing).
  const IntervalConstraintProto& Proto() const {
    return cp_model_->constraints(index_).interval();
  }

  /// Returns the mutable underlying protobuf object (useful for model edition).
  IntervalConstraintProto* MutableProto() const {
    return cp_model_->mutable_constraints(index_)->mutable_interval();
  }

  /// Returns the index of the interval constraint in the model.
  int index() const { return index_; }

 private:
  friend class CpModelBuilder;
  friend class CumulativeConstraint;
  friend class NoOverlap2DConstraint;
  friend std::ostream& operator<<(std::ostream& os, const IntervalVar& var);

  IntervalVar(int index, CpModelProto* cp_model);

  CpModelProto* cp_model_ = nullptr;
  int index_ = kint32min;
};

std::ostream& operator<<(std::ostream& os, const IntervalVar& var);

/**
 * A constraint.
 *
 * This class enables you to modify the constraint that was previously added to
 * the model.
 *
 * The constraint must be built using the different \c CpModelBuilder::AddXXX
 * methods.
 */
class Constraint {
 public:
  /**
   * The constraint will be enforced iff all literals listed here are true.
   *
   * If this is empty, then the constraint will always be enforced. An enforced
   * constraint must be satisfied, and an un-enforced one will simply be
   * ignored.
   *
   * This is also called half-reification. To have an equivalence between a
   * literal and a constraint (full reification), one must add both a constraint
   * (controlled by a literal l) and its negation (controlled by the negation of
   * l).
   *
   * Important: as of September 2018, only a few constraint support enforcement:
   * - bool_or, bool_and, linear: fully supported.
   * - interval: only support a single enforcement literal.
   * - other: no support (but can be added on a per-demand basis).
   */
  Constraint OnlyEnforceIf(absl::Span<const BoolVar> literals);

  /// See OnlyEnforceIf(absl::Span<const BoolVar> literals).
  Constraint OnlyEnforceIf(BoolVar literal);

  /// Sets the name of the constraint.
  Constraint WithName(const std::string& name);

  /// Returns the name of the constraint (or the empty string if not set).
  const std::string& Name() const;

  /// Returns the underlying protobuf object (useful for testing).
  const ConstraintProto& Proto() const { return *proto_; }

  /// Returns the mutable underlying protobuf object (useful for model edition).
  ConstraintProto* MutableProto() const { return proto_; }

 protected:
  friend class CpModelBuilder;

  explicit Constraint(ConstraintProto* proto);

  ConstraintProto* proto_ = nullptr;
};

/**
 * Specialized circuit constraint.
 *
 * This constraint allows adding arcs to the circuit constraint incrementally.
 */
class CircuitConstraint : public Constraint {
 public:
  /**
   * Add an arc to the circuit.
   *
   * @param tail the index of the tail node.
   * @param head the index of the head node.
   * @param literal it will be set to true if the arc is selected.
   */
  void AddArc(int tail, int head, BoolVar literal);

 private:
  friend class CpModelBuilder;

  using Constraint::Constraint;
};

/**
 * Specialized circuit constraint.
 *
 * This constraint allows adding arcs to the multiple circuit constraint
 * incrementally.
 */
class MultipleCircuitConstraint : public Constraint {
 public:
  /**
   * Add an arc to the circuit.
   *
   * @param tail the index of the tail node.
   * @param head the index of the head node.
   * @param literal it will be set to true if the arc is selected.
   */
  void AddArc(int tail, int head, BoolVar literal);

 private:
  friend class CpModelBuilder;

  using Constraint::Constraint;
};

/**
 * Specialized assignment constraint.
 *
 * This constraint allows adding tuples to the allowed/forbidden assignment
 * constraint incrementally.
 */
class TableConstraint : public Constraint {
 public:
  /// Adds a tuple of possible values to the constraint.
  void AddTuple(absl::Span<const int64> tuple);

 private:
  friend class CpModelBuilder;

  using Constraint::Constraint;
};

/**
 * Specialized reservoir constraint.
 *
 * This constraint allows adding emptying/refilling events to the reservoir
 * constraint incrementally.
 */
class ReservoirConstraint : public Constraint {
 public:
  /**
   * Adds a mandatory event
   *
   * It will increase the used capacity by `c demand at time `c time.
   */
  void AddEvent(IntVar time, int64 demand);

  /**
   * Adds a optional event
   *
   * If `c is_active is true, It will increase the used capacity by `c demand at
   * time `c time.
   */
  void AddOptionalEvent(IntVar time, int64 demand, BoolVar is_active);

 private:
  friend class CpModelBuilder;

  ReservoirConstraint(ConstraintProto* proto, CpModelBuilder* builder);

  CpModelBuilder* builder_;
};

/**
 * Specialized automaton constraint.
 *
 * This constraint allows adding transitions to the automaton constraint
 * incrementally.
 */
class AutomatonConstraint : public Constraint {
 public:
  /// Adds a transitions to the automaton.
  void AddTransition(int tail, int head, int64 transition_label);

 private:
  friend class CpModelBuilder;

  using Constraint::Constraint;
};

/**
 * Specialized no_overlap2D constraint.
 *
 * This constraint allows adding rectangles to the no_overlap2D
 * constraint incrementally.
 */
class NoOverlap2DConstraint : public Constraint {
 public:
  /// Adds a rectangle (parallel to the axis) to the constraint.
  void AddRectangle(IntervalVar x_coordinate, IntervalVar y_coordinate);

 private:
  friend class CpModelBuilder;

  using Constraint::Constraint;
};

/**
 * Specialized cumulative constraint.
 *
 * This constraint allows adding fixed or variables demands to the cumulative
 * constraint incrementally.
 */
class CumulativeConstraint : public Constraint {
 public:
  /// Adds a pair (interval, demand) to the constraint.
  void AddDemand(IntervalVar interval, IntVar demand);

 private:
  friend class CpModelBuilder;

  CumulativeConstraint(ConstraintProto* proto, CpModelBuilder* builder);

  CpModelBuilder* builder_;
};

/**
 * Wrapper class around the cp_model proto.
 *
 * This class provides two types of methods:
 *  - NewXXX to create integer, boolean, or interval variables.
 *  - AddXXX to create new constraints and add them to the model.
 */
class CpModelBuilder {
 public:
  /// Creates an integer variable with the given domain.
  IntVar NewIntVar(const Domain& domain);

  /// Creates a Boolean variable.
  BoolVar NewBoolVar();

  /// Creates a constant variable.
  IntVar NewConstant(int64 value);

  /// Creates an always true Boolean variable.
  BoolVar TrueVar();

  /// Creates an always false Boolean variable.
  BoolVar FalseVar();

  /// Creates an interval variable.
  IntervalVar NewIntervalVar(IntVar start, IntVar size, IntVar end);

  /// Creates an optional interval variable.
  IntervalVar NewOptionalIntervalVar(IntVar start, IntVar size, IntVar end,
                                     BoolVar presence);

  /// Adds the constraint that at least one of the literals must be true.
  Constraint AddBoolOr(absl::Span<const BoolVar> literals);

  /// Adds the constraint that all literals must be true.
  Constraint AddBoolAnd(absl::Span<const BoolVar> literals);

  /// Adds the constraint that a odd number of literal is true.
  Constraint AddBoolXor(absl::Span<const BoolVar> literals);

  /// Adds a => b.
  Constraint AddImplication(BoolVar a, BoolVar b) {
    return AddBoolOr({a.Not(), b});
  }

  /// Adds left == right.
  Constraint AddEquality(const LinearExpr& left, const LinearExpr& right);

  /// Adds left >= right.
  Constraint AddGreaterOrEqual(const LinearExpr& left, const LinearExpr& right);

  /// Adds left > right.
  Constraint AddGreaterThan(const LinearExpr& left, const LinearExpr& right);

  /// Adds left <= right.
  Constraint AddLessOrEqual(const LinearExpr& left, const LinearExpr& right);

  /// Adds left < right.
  Constraint AddLessThan(const LinearExpr& left, const LinearExpr& right);

  /// Adds expr in domain.
  Constraint AddLinearConstraint(const LinearExpr& expr, const Domain& domain);

  /// Adds left != right.
  Constraint AddNotEqual(const LinearExpr& left, const LinearExpr& right);

  /// this constraint forces all variables to have different values.
  Constraint AddAllDifferent(absl::Span<const IntVar> vars);

  /// Adds the element constraint: variables[index] == target
  Constraint AddVariableElement(IntVar index,
                                absl::Span<const IntVar> variables,
                                IntVar target);

  /// Adds the element constraint: values[index] == target
  Constraint AddElement(IntVar index, absl::Span<const int64> values,
                        IntVar target);

  /**
   * Adds a circuit constraint.
   *
   * The circuit constraint is defined on a graph where the arc presence is
   * controlled by literals. That is the arc is part of the circuit of its
   * corresponding literal is assigned to true.
   *
   * For now, we ignore node indices with no incident arc. All the other nodes
   * must have exactly one incoming and one outgoing selected arc (i.e. literal
   * at true). All the selected arcs that are not self-loops must form a single
   * circuit.
   *
   * It returns a circuit constraint that allows adding arcs incrementally after
   * construction.
   *
   */
  CircuitConstraint AddCircuitConstraint();

  /**
   * Adds a multiple circuit constraint, aka the "VRP" (Vehicle Routing Problem)
   * constraint.
   *
   * The direct graph where arc #i (from tails[i] to head[i]) is present iff
   * literals[i] is true must satisfy this set of properties:
   * - #incoming arcs == 1 except for node 0.
   * - #outgoing arcs == 1 except for node 0.
   * - for node zero, #incoming arcs == #outgoing arcs.
   * - There are no duplicate arcs.
   * - Self-arcs are allowed except for node 0.
   * - There is no cycle in this graph, except through node 0.
   */
  MultipleCircuitConstraint AddMultipleCircuitConstraint();

  /**
   * Adds an allowed assignments constraint.
   *
   * An AllowedAssignments constraint is a constraint on an array of variables
   * that forces, when all variables are fixed to a single value, that the
   * corresponding list of values is equal to one of the tuple added to the
   * constraint.
   *
   * It returns a table constraint that allows adding tuples incrementally after
   * construction,
   */
  TableConstraint AddAllowedAssignments(absl::Span<const IntVar> vars);

  /**
   * Adds an forbidden assignments constraint.
   *
   * A ForbiddenAssignments constraint is a constraint on an array of variables
   * where the list of impossible combinations is provided in the tuples added
   * to the constraint.
   *
   * It returns a table constraint that allows adding tuples incrementally after
   * construction,
   */
  TableConstraint AddForbiddenAssignments(absl::Span<const IntVar> vars);

  /** An inverse constraint
   *
   * It enforces that if 'variables[i]' is assigned a value
   * 'j', then inverse_variables[j] is assigned a value 'i'. And vice versa.
   */
  Constraint AddInverseConstraint(absl::Span<const IntVar> variables,
                                  absl::Span<const IntVar> inverse_variables);

  /**
   * Adds a reservoir constraint with optional refill/emptying events.
   *
   * Maintain a reservoir level within bounds. The water level starts at 0, and
   * at any time >= 0, it must be within min_level, and max_level. Furthermore,
   * this constraints expect all times variables to be >= 0. Given an event
   * (time, demand, active), if active is true, and if time is assigned a value
   * t, then the level of the reservoir changes by demand (which is constant) at
   * time t.
   *
   * Note that level_min can be > 0, or level_max can be < 0. It just forces
   * some demands to be executed at time 0 to make sure that we are within those
   * bounds with the executed demands. Therefore, at any time t >= 0:
   *     sum(demands[i] * actives[i] if times[i] <= t) in [min_level, max_level]
   *
   * It returns a ReservoirConstraint that allows adding optional and non
   * optional events incrementally after construction.
   */
  ReservoirConstraint AddReservoirConstraint(int64 min_level, int64 max_level);

  /**
   *
   * An automaton constraint/
   *
   * An automaton constraint takes a list of variables (of size n), an initial
   * state, a set of final states, and a set of transitions. A transition is a
   * triplet ('tail', 'head', 'label'), where 'tail' and 'head' are states,
   * and 'label' is the label of an arc from 'head' to 'tail',
   * corresponding to the value of one variable in the list of variables.
   *
   * This automaton will be unrolled into a flow with n + 1 phases. Each phase
   * contains the possible states of the automaton. The first state contains the
   * initial state. The last phase contains the final states.
   *
   * Between two consecutive phases i and i + 1, the automaton creates a set of
   * arcs. For each transition (tail, head, label), it will add an arc from
   * the state 'tail' of phase i and the state 'head' of phase i + 1. This arc
   * labeled by the value 'label' of the variables 'variables[i]'. That is,
   * this arc can only be selected if 'variables[i]' is assigned the value
   * 'label'. A feasible solution of this constraint is an assignment of
   * variables such that, starting from the initial state in phase 0, there is a
   * path labeled by the values of the variables that ends in one of the final
   * states in the final phase.
   *
   * It returns an AutomatonConstraint that allows adding transition
   * incrementally after construction.
   */
  AutomatonConstraint AddAutomaton(
      absl::Span<const IntVar> transition_variables, int starting_state,
      absl::Span<const int> final_states);

  /// Adds target == min(vars).
  Constraint AddMinEquality(IntVar target, absl::Span<const IntVar> vars);

  /// Adds target == min(exprs).
  Constraint AddLinMinEquality(const LinearExpr& target,
                               absl::Span<const LinearExpr> exprs);

  /// Adds target == max(vars).
  Constraint AddMaxEquality(IntVar target, absl::Span<const IntVar> vars);

  /// Adds target == max(exprs).
  Constraint AddLinMaxEquality(const LinearExpr& target,
                               absl::Span<const LinearExpr> exprs);

  /// Adds target = num / denom (integer division rounded towards 0).
  Constraint AddDivisionEquality(IntVar target, IntVar numerator,
                                 IntVar denominator);

  /// Adds target == abs(var).
  Constraint AddAbsEquality(IntVar target, IntVar var);

  /// Adds target = var % mod.
  Constraint AddModuloEquality(IntVar target, IntVar var, IntVar mod);

  /// Adds target == prod(vars).
  Constraint AddProductEquality(IntVar target, absl::Span<const IntVar> vars);

  /**
   *  Adds a no-overlap constraint that ensures that all present intervals do
   * not overlap in time.
   */
  Constraint AddNoOverlap(absl::Span<const IntervalVar> vars);

  /**
   * The no_overlap_2d constraint prevents a set of boxes from overlapping.
   */
  NoOverlap2DConstraint AddNoOverlap2D();

  /** The cumulative constraint
   *
   * It ensures that for any integer point, the sum of the demands of the
   * intervals containing that point does not exceed the capacity.
   */
  CumulativeConstraint AddCumulative(IntVar capacity);

  /// Adds a linear minimization objective.
  void Minimize(const LinearExpr& expr);

  /// Adds a linear maximization objective.
  void Maximize(const LinearExpr& expr);

  /**
   * Sets scaling of the objective.
   *
   * It must be called after \c Minimize() or \c Maximize()).
   *
   * \c scaling must be > 0.0.
   */
  void ScaleObjectiveBy(double scaling);

  /// Adds a decision strategy on a list of integer variables.
  void AddDecisionStrategy(
      absl::Span<const IntVar> variables,
      DecisionStrategyProto::VariableSelectionStrategy var_strategy,
      DecisionStrategyProto::DomainReductionStrategy domain_strategy);

  /// Adds a decision strategy on a list of boolean variables.
  void AddDecisionStrategy(
      absl::Span<const BoolVar> variables,
      DecisionStrategyProto::VariableSelectionStrategy var_strategy,
      DecisionStrategyProto::DomainReductionStrategy domain_strategy);

  /// Adds hinting to a variable.
  void AddHint(IntVar var, int64 value);

  // TODO(user) : add MapDomain?

  const CpModelProto& Build() const { return Proto(); }

  const CpModelProto& Proto() const { return cp_model_; }
  CpModelProto* MutableProto() { return &cp_model_; }

 private:
  friend class CumulativeConstraint;
  friend class ReservoirConstraint;

  // Fills the 'expr_proto' with the linear expression represented by 'expr'.
  void LinearExprToProto(const LinearExpr& expr,
                         LinearExpressionProto* expr_proto);

  // Returns a (cached) integer variable index with a constant value.
  int IndexFromConstant(int64 value);

  // Returns a valid integer index from a BoolVar index.
  // If the input index is a positive, it returns this index.
  // If the input index is negative, it creates a cached IntVar equal to
  // 1 - BoolVar(PositiveRef(index)), and returns the index of this new
  // variable.
  int GetOrCreateIntegerIndex(int index);

  void FillLinearTerms(const LinearExpr& left, const LinearExpr& right,
                       LinearConstraintProto* proto);

  CpModelProto cp_model_;
  absl::flat_hash_map<int64, int> constant_to_index_map_;
  absl::flat_hash_map<int, int> bool_to_integer_index_map_;
};

/// Evaluates the value of an linear expression in a solver response.
int64 SolutionIntegerValue(const CpSolverResponse& r, const LinearExpr& expr);

/// Returns the min of an integer variable in a solution.
int64 SolutionIntegerMin(const CpSolverResponse& r, IntVar x);

/// Returns the max of an integer variable in a solution.
int64 SolutionIntegerMax(const CpSolverResponse& r, IntVar x);

/// Evaluates the value of a Boolean literal in a solver response.
bool SolutionBooleanValue(const CpSolverResponse& r, BoolVar x);

}  // namespace sat
}  // namespace operations_research

#endif  // OR_TOOLS_SAT_CP_MODEL_H_