cliques.h 24.1 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Maximal clique algorithms, based on the Bron-Kerbosch algorithm.
// See http://en.wikipedia.org/wiki/Bron-Kerbosch_algorithm
// and
// C. Bron and J. Kerbosch, Joep, "Algorithm 457: finding all cliques of an
// undirected graph", CACM 16 (9): 575-577, 1973.
// http://dl.acm.org/citation.cfm?id=362367&bnc=1.
//
// Keywords: undirected graph, clique, clique cover, Bron, Kerbosch.

#ifndef OR_TOOLS_GRAPH_CLIQUES_H_
#define OR_TOOLS_GRAPH_CLIQUES_H_

#include <functional>
#include <numeric>
#include <vector>

#include "absl/strings/str_cat.h"
#include "ortools/base/int_type.h"
#include "ortools/base/int_type_indexed_vector.h"
#include "ortools/base/logging.h"
#include "ortools/util/time_limit.h"

namespace operations_research {

// Finds all maximal cliques, even of size 1, in the
// graph described by the graph callback. graph->Run(i, j) indicates
// if there is an arc between i and j.
// This function takes ownership of 'callback' and deletes it after it has run.
// If 'callback' returns true, then the search for cliques stops.
void FindCliques(std::function<bool(int, int)> graph, int node_count,
                 std::function<bool(const std::vector<int>&)> callback);

// Covers the maximum number of arcs of the graph with cliques. The graph
// is described by the graph callback. graph->Run(i, j) indicates if
// there is an arc between i and j.
// This function takes ownership of 'callback' and deletes it after it has run.
// It calls 'callback' upon each clique.
// It ignores cliques of size 1.
void CoverArcsByCliques(std::function<bool(int, int)> graph, int node_count,
                        std::function<bool(const std::vector<int>&)> callback);

// Possible return values of the callback for reporting cliques. The returned
// value determines whether the algorithm will continue the search.
enum class CliqueResponse {
  // The algorithm will continue searching for other maximal cliques.
  CONTINUE,
  // The algorithm will stop the search immediately. The search can be resumed
  // by calling BronKerboschAlgorithm::Run (resp. RunIterations) again.
  STOP
};

// The status value returned by BronKerboschAlgorithm::Run and
// BronKerboschAlgorithm::RunIterations.
enum class BronKerboschAlgorithmStatus {
  // The algorithm has enumerated all maximal cliques.
  COMPLETED,
  // The search algorithm was interrupted either because it reached the
  // iteration limit or because the clique callback returned
  // CliqueResponse::STOP.
  INTERRUPTED
};

// Implements the Bron-Kerbosch algorithm for finding maximal cliques.
// The graph is represented as a callback that gets two nodes as its arguments
// and it returns true if and only if there is an arc between the two nodes. The
// cliques are reported back to the user using a second callback.
//
// Typical usage:
// auto graph = [](int node1, int node2) { return true; };
// auto on_clique = [](const std::vector<int>& clique) {
//     LOG(INFO) << "Clique!";
// };
//
// BronKerboschAlgorithm<int> bron_kerbosch(graph, num_nodes, on_clique);
// bron_kerbosch.Run();
//
// or:
//
// BronKerboschAlgorithm bron_kerbosch(graph, num_nodes, clique);
// bron_kerbosch.RunIterations(kMaxNumIterations);
//
// This is a non-recursive implementation of the Bron-Kerbosch algorithm with
// pivots as described in the paper by Bron and Kerbosch (1973) (the version 2
// algorithm in the paper).
// The basic idea of the algorithm is to incrementally build the cliques using
// depth-first search. During the search, the algorithm maintains two sets of
// candidates (nodes that are connected to all nodes in the current clique):
// - the "not" set - these are candidates that were already visited by the
//   search and all the maximal cliques that contain them as a part of the
//   current clique were already reported.
// - the actual candidates - these are candidates that were not visited yet, and
//   they can be added to the clique.
// In each iteration, the algorithm does the first of the following actions that
// applies:
// A. If there are no actual candidates and there are candidates in the "not"
//    set, or if all actual candidates are connected to the same node in the
//    "not" set, the current clique can't be extended to a maximal clique that
//    was not already reported. Return from the recursive call and move the
//    selected candidate to the set "not".
// B. If there are no candidates at all, it means that the current clique can't
//    be extended and that it is in fact a maximal clique. Report it to the user
//    and return from the recursive call. Move the selected candidate to the set
//    "not".
// C. Otherwise, there are actual candidates, extend the current clique with one
//    of these candidates and process it recursively.
//
// To avoid unnecessary steps, the algorithm selects a pivot at each level of
// the recursion to guide the selection of candidates added to the current
// clique. The pivot can be either in the "not" set and among the actual
// candidates. The algorithm tries to move the pivot and all actual candidates
// connected to it to the set "not" as quickly as possible. This will fulfill
// the conditions of step A, and the search algorithm will be able to leave the
// current branch. Selecting a pivot that has the lowest number of disconnected
// nodes among the candidates can reduce the running time significantly.
//
// The worst-case maximal depth of the recursion is equal to the number of nodes
// in the graph, which makes the natural recursive implementation impractical
// for nodes with more than a few thousands of nodes. To avoid the limitation,
// this class simulates the recursion by maintaining a stack with the state at
// each level of the recursion. The algorithm then runs in a loop. In each
// iteration, the algorithm can do one or both of:
// 1. Return to the previous recursion level (step A or B of the algorithm) by
//    removing the top state from the stack.
// 2. Select the next candidate and enter the next recursion level (step C of
//    the algorithm) by adding a new state to the stack.
//
// The worst-case time complexity of the algorithm is O(3^(N/3)), and the memory
// complexity is O(N^2), where N is the number of nodes in the graph.
template <typename NodeIndex>
class BronKerboschAlgorithm {
 public:
  // A callback called by the algorithm to test if there is an arc between a
  // pair of nodes. The callback must return true if and only if there is an
  // arc. Note that to function properly, the function must be symmetrical
  // (represent an undirected graph).
  using IsArcCallback = std::function<bool(NodeIndex, NodeIndex)>;
  // A callback called by the algorithm to report a maximal clique to the user.
  // The clique is returned as a list of nodes in the clique, in no particular
  // order. The caller must make a copy of the vector if they want to keep the
  // nodes.
  //
  // The return value of the callback controls how the algorithm continues after
  // this clique. See the description of the values of 'CliqueResponse' for more
  // details.
  using CliqueCallback =
      std::function<CliqueResponse(const std::vector<NodeIndex>&)>;

  // Initializes the Bron-Kerbosch algorithm for the given graph and clique
  // callback function.
  BronKerboschAlgorithm(IsArcCallback is_arc, NodeIndex num_nodes,
                        CliqueCallback clique_callback)
      : is_arc_(std::move(is_arc)),
        clique_callback_(std::move(clique_callback)),
        num_nodes_(num_nodes) {}

  // Runs the Bron-Kerbosch algorithm for kint64max iterations. In practice,
  // this is equivalent to running until completion or until the clique callback
  // returns BronKerboschAlgorithmStatus::STOP. If the method returned because
  // the search is finished, it will return COMPLETED; otherwise, it will return
  // INTERRUPTED and it can be resumed by calling this method again.
  BronKerboschAlgorithmStatus Run();

  // Runs at most 'max_num_iterations' iterations of the Bron-Kerbosch
  // algorithm. When this function returns INTERRUPTED, there is still work to
  // be done to process all the cliques in the graph. In such case the method
  // can be called again and it will resume the work where the previous call had
  // stopped. When it returns COMPLETED any subsequent call to the method will
  // resume the search from the beginning.
  BronKerboschAlgorithmStatus RunIterations(int64 max_num_iterations);

  // Runs at most 'max_num_iterations' iterations of the Bron-Kerbosch
  // algorithm, until the time limit is exceeded or until all cliques are
  // enumerated. When this function returns INTERRUPTED, there is still work to
  // be done to process all the cliques in the graph. In such case the method
  // can be called again and it will resume the work where the previous call had
  // stopped. When it returns COMPLETED any subsequent call to the method will
  // resume the search from the beginning.
  BronKerboschAlgorithmStatus RunWithTimeLimit(int64 max_num_iterations,
                                               TimeLimit* time_limit);

  // Runs the Bron-Kerbosch algorithm for at most kint64max iterations, until
  // the time limit is excceded or until all cliques are enumerated. In
  // practice, running the algorithm for kint64max iterations is equivalent to
  // running until completion or until the other stopping conditions apply. When
  // this function returns INTERRUPTED, there is still work to be done to
  // process all the cliques in the graph. In such case the method can be called
  // again and it will resume the work where the previous call had stopped. When
  // it returns COMPLETED any subsequent call to the method will resume the
  // search from the beginning.
  BronKerboschAlgorithmStatus RunWithTimeLimit(TimeLimit* time_limit) {
    return RunWithTimeLimit(kint64max, time_limit);
  }

 private:
  DEFINE_INT_TYPE(CandidateIndex, ptrdiff_t);

  // A data structure that maintains the variables of one "iteration" of the
  // search algorithm. These are the variables that would normally be allocated
  // on the stack in the recursive implementation.
  //
  // Note that most of the variables in the structure are explicitly left
  // uninitialized by the constructor to avoid wasting resources on values that
  // will be overwritten anyway. Most of the initialization is done in
  // BronKerboschAlgorithm::InitializeState.
  struct State {
    State() {}
    State(const State& other)
        : pivot(other.pivot),
          num_remaining_candidates(other.num_remaining_candidates),
          candidates(other.candidates),
          first_candidate_index(other.first_candidate_index),
          candidate_for_recursion(other.candidate_for_recursion) {}

    State& operator=(const State& other) {
      pivot = other.pivot;
      num_remaining_candidates = other.num_remaining_candidates;
      candidates = other.candidates;
      first_candidate_index = other.first_candidate_index;
      candidate_for_recursion = other.candidate_for_recursion;
      return *this;
    }

    // Moves the first candidate in the state to the "not" set. Assumes that the
    // first candidate is also the pivot or a candidate disconnected from the
    // pivot (as done by RunIteration).
    inline void MoveFirstCandidateToNotSet() {
      ++first_candidate_index;
      --num_remaining_candidates;
    }

    // Creates a human-readable representation of the current state.
    std::string DebugString() {
      std::string buffer;
      absl::StrAppend(&buffer, "pivot = ", pivot,
                      "\nnum_remaining_candidates = ", num_remaining_candidates,
                      "\ncandidates = [");
      for (CandidateIndex i(0); i < candidates.size(); ++i) {
        if (i > 0) buffer += ", ";
        absl::StrAppend(&buffer, candidates[i]);
      }
      absl::StrAppend(
          &buffer, "]\nfirst_candidate_index = ", first_candidate_index.value(),
          "\ncandidate_for_recursion = ", candidate_for_recursion.value());
      return buffer;
    }

    // The pivot node selected for the given level of the recursion.
    NodeIndex pivot;
    // The number of remaining candidates to be explored at the given level of
    // the recursion; the number is computed as num_disconnected_nodes +
    // pre_increment in the original algorithm.
    int num_remaining_candidates;
    // The list of nodes that are candidates for extending the current clique.
    // This vector has the format proposed in the paper by Bron-Kerbosch; the
    // first 'first_candidate_index' elements of the vector represent the
    // "not" set of nodes that were already visited by the algorithm. The
    // remaining elements are the actual candidates for extending the current
    // clique.
    // NOTE(user): We could store the delta between the iterations; however,
    // we need to evaluate the impact this would have on the performance.
    gtl::ITIVector<CandidateIndex, NodeIndex> candidates;
    // The index of the first actual candidate in 'candidates'. This number is
    // also the number of elements of the "not" set stored at the beginning of
    // 'candidates'.
    CandidateIndex first_candidate_index;

    // The current position in candidates when looking for the pivot and/or the
    // next candidate disconnected from the pivot.
    CandidateIndex candidate_for_recursion;
  };

  // The deterministic time coefficients for the push and pop operations of the
  // Bron-Kerbosch algorithm. The coefficients are set to match approximately
  // the running time in seconds on a recent workstation on the random graph
  // benchmark.
  // NOTE(user): PushState is not the only source of complexity in the
  // algorithm, but non-negative linear least squares produced zero coefficients
  // for all other deterministic counters tested during the benchmarking. When
  // we optimize the algorithm, we might need to add deterministic time to the
  // other places that may produce complexity, namely InitializeState, PopState
  // and SelectCandidateIndexForRecursion.
  static const double kPushStateDeterministicTimeSecondsPerCandidate;

  // Initializes the root state of the algorithm.
  void Initialize();

  // Removes the top state from the state stack. This is equivalent to returning
  // in the recursive implementation of the algorithm.
  void PopState();

  // Adds a new state to the top of the stack, adding the node 'selected' to the
  // current clique. This is equivalent to making a recurisve call in the
  // recursive implementation of the algorithm.
  void PushState(NodeIndex selected);

  // Initializes the given state. Runs the pivot selection algorithm in the
  // state.
  void InitializeState(State* state);

  // Returns true if (node1, node2) is an arc in the graph or if node1 == node2.
  inline bool IsArc(NodeIndex node1, NodeIndex node2) const {
    return node1 == node2 || is_arc_(node1, node2);
  }

  // Selects the next node for recursion. The selected node is either the pivot
  // (if it is not in the set "not") or a node that is disconnected from the
  // pivot.
  CandidateIndex SelectCandidateIndexForRecursion(State* state);

  // Returns a human-readable string representation of the clique.
  std::string CliqueDebugString(const std::vector<NodeIndex>& clique);

  // The callback called when the algorithm needs to determine if (node1, node2)
  // is an arc in the graph.
  IsArcCallback is_arc_;

  // The callback called when the algorithm discovers a maximal clique. The
  // return value of the callback controls how the algorithm proceeds with the
  // clique search.
  CliqueCallback clique_callback_;

  // The number of nodes in the graph.
  const NodeIndex num_nodes_;

  // Contains the state of the aglorithm. The vector serves as an external stack
  // for the recursive part of the algorithm - instead of using the C++ stack
  // and natural recursion, it is implemented as a loop and new states are added
  // to the top of the stack. The algorithm ends when the stack is empty.
  std::vector<State> states_;

  // A vector that receives the current clique found by the algorithm.
  std::vector<NodeIndex> current_clique_;

  // Set to true if the algorithm is active (it was not stopped by an the clique
  // callback).
  int64 num_remaining_iterations_;

  // The current time limit used by the solver. The time limit is assigned by
  // the Run methods and it can be different for each call to run.
  TimeLimit* time_limit_;
};

template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::InitializeState(State* state) {
  DCHECK(state != nullptr);
  const int num_candidates = state->candidates.size();
  int num_disconnected_candidates = num_candidates;
  state->pivot = 0;
  CandidateIndex pivot_index(-1);
  for (CandidateIndex pivot_candidate_index(0);
       pivot_candidate_index < num_candidates &&
       num_disconnected_candidates > 0;
       ++pivot_candidate_index) {
    const NodeIndex pivot_candidate = state->candidates[pivot_candidate_index];
    int count = 0;
    for (CandidateIndex i(state->first_candidate_index); i < num_candidates;
         ++i) {
      if (!IsArc(pivot_candidate, state->candidates[i])) {
        ++count;
      }
    }
    if (count < num_disconnected_candidates) {
      pivot_index = pivot_candidate_index;
      state->pivot = pivot_candidate;
      num_disconnected_candidates = count;
    }
  }
  state->num_remaining_candidates = num_disconnected_candidates;
  if (pivot_index >= state->first_candidate_index) {
    std::swap(state->candidates[pivot_index],
              state->candidates[state->first_candidate_index]);
    ++state->num_remaining_candidates;
  }
}

template <typename NodeIndex>
typename BronKerboschAlgorithm<NodeIndex>::CandidateIndex
BronKerboschAlgorithm<NodeIndex>::SelectCandidateIndexForRecursion(
    State* state) {
  DCHECK(state != nullptr);
  CandidateIndex disconnected_node_index =
      std::max(state->first_candidate_index, state->candidate_for_recursion);
  while (disconnected_node_index < state->candidates.size() &&
         state->candidates[disconnected_node_index] != state->pivot &&
         IsArc(state->pivot, state->candidates[disconnected_node_index])) {
    ++disconnected_node_index;
  }
  state->candidate_for_recursion = disconnected_node_index;
  return disconnected_node_index;
}

template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::Initialize() {
  DCHECK(states_.empty());
  states_.reserve(num_nodes_);
  states_.emplace_back();

  State* const root_state = &states_.back();
  root_state->first_candidate_index = 0;
  root_state->candidate_for_recursion = 0;
  root_state->candidates.resize(num_nodes_, 0);
  std::iota(root_state->candidates.begin(), root_state->candidates.end(), 0);
  root_state->num_remaining_candidates = num_nodes_;
  InitializeState(root_state);

  DVLOG(2) << "Initialized";
}

template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::PopState() {
  DCHECK(!states_.empty());
  states_.pop_back();
  if (!states_.empty()) {
    State* const state = &states_.back();
    current_clique_.pop_back();
    state->MoveFirstCandidateToNotSet();
  }
}

template <typename NodeIndex>
std::string BronKerboschAlgorithm<NodeIndex>::CliqueDebugString(
    const std::vector<NodeIndex>& clique) {
  std::string message = "Clique: [ ";
  for (const NodeIndex node : clique) {
    absl::StrAppend(&message, node, " ");
  }
  message += "]";
  return message;
}

template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::PushState(NodeIndex selected) {
  DCHECK(!states_.empty());
  DCHECK(time_limit_ != nullptr);
  DVLOG(2) << "PushState: New depth = " << states_.size() + 1
           << ", selected node = " << selected;
  gtl::ITIVector<CandidateIndex, NodeIndex> new_candidates;

  State* const previous_state = &states_.back();
  const double deterministic_time =
      kPushStateDeterministicTimeSecondsPerCandidate *
      previous_state->candidates.size();
  time_limit_->AdvanceDeterministicTime(deterministic_time, "PushState");

  // Add all candidates from previous_state->candidates that are connected to
  // 'selected' in the graph to the vector 'new_candidates', skipping the node
  // 'selected'; this node is always at the position
  // 'previous_state->first_candidate_index', so we can skip it by skipping the
  // element at this particular index.
  new_candidates.reserve(previous_state->candidates.size());
  for (CandidateIndex i(0); i < previous_state->first_candidate_index; ++i) {
    const NodeIndex candidate = previous_state->candidates[i];
    if (IsArc(selected, candidate)) {
      new_candidates.push_back(candidate);
    }
  }
  const CandidateIndex new_first_candidate_index(new_candidates.size());
  for (CandidateIndex i = previous_state->first_candidate_index + 1;
       i < previous_state->candidates.size(); ++i) {
    const NodeIndex candidate = previous_state->candidates[i];
    if (IsArc(selected, candidate)) {
      new_candidates.push_back(candidate);
    }
  }

  current_clique_.push_back(selected);
  if (new_candidates.empty()) {
    // We've found a clique. Report it to the user, but do not push the state
    // because it would be popped immediately anyway.
    DVLOG(2) << CliqueDebugString(current_clique_);
    const CliqueResponse response = clique_callback_(current_clique_);
    if (response == CliqueResponse::STOP) {
      // The number of remaining iterations will be decremented at the end of
      // the loop in RunIterations; setting it to 0 here would make it -1 at
      // the end of the main loop.
      num_remaining_iterations_ = 1;
    }
    current_clique_.pop_back();
    previous_state->MoveFirstCandidateToNotSet();
    return;
  }

  // NOTE(user): The following line may invalidate previous_state (if the
  // vector data was re-allocated in the process). We must avoid using
  // previous_state below here.
  states_.emplace_back();
  State* const new_state = &states_.back();
  new_state->candidates.swap(new_candidates);
  new_state->first_candidate_index = new_first_candidate_index;

  InitializeState(new_state);
}

template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::RunWithTimeLimit(
    int64 max_num_iterations, TimeLimit* time_limit) {
  CHECK(time_limit != nullptr);
  time_limit_ = time_limit;
  if (states_.empty()) {
    Initialize();
  }
  for (num_remaining_iterations_ = max_num_iterations;
       !states_.empty() && num_remaining_iterations_ > 0 &&
       !time_limit->LimitReached();
       --num_remaining_iterations_) {
    State* const state = &states_.back();
    DVLOG(2) << "Loop: " << states_.size() << " states, "
             << state->num_remaining_candidates << " candidate to explore\n"
             << state->DebugString();
    if (state->num_remaining_candidates == 0) {
      PopState();
      continue;
    }

    const CandidateIndex selected_index =
        SelectCandidateIndexForRecursion(state);
    DVLOG(2) << "selected_index = " << selected_index;
    const NodeIndex selected = state->candidates[selected_index];
    DVLOG(2) << "Selected candidate = " << selected;

    NodeIndex& f = state->candidates[state->first_candidate_index];
    NodeIndex& s = state->candidates[selected_index];
    std::swap(f, s);

    PushState(selected);
  }
  time_limit_ = nullptr;
  return states_.empty() ? BronKerboschAlgorithmStatus::COMPLETED
                         : BronKerboschAlgorithmStatus::INTERRUPTED;
}

template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::RunIterations(
    int64 max_num_iterations) {
  TimeLimit time_limit(std::numeric_limits<double>::infinity());
  return RunWithTimeLimit(max_num_iterations, &time_limit);
}

template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::Run() {
  return RunIterations(kint64max);
}

template <typename NodeIndex>
const double BronKerboschAlgorithm<
    NodeIndex>::kPushStateDeterministicTimeSecondsPerCandidate = 0.54663e-7;
}  // namespace operations_research

#endif  // OR_TOOLS_GRAPH_CLIQUES_H_