christofides.h 13.4 KB
Newer Older
Valentin Platzgummer's avatar
Valentin Platzgummer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ChristofidesPathSolver computes an approximate solution to the Traveling
// Salesman Problen using the Christofides algorithm (c.f.
// https://en.wikipedia.org/wiki/Christofides_algorithm).
// Note that the algorithm guarantees finding a solution within 3/2 of the
// optimum. Its complexity is O(n^2 * log(n)) where n is the number of nodes.

#ifndef OR_TOOLS_GRAPH_CHRISTOFIDES_H_
#define OR_TOOLS_GRAPH_CHRISTOFIDES_H_

#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/graph/eulerian_path.h"
#include "ortools/graph/graph.h"
#include "ortools/graph/minimum_spanning_tree.h"
#include "ortools/graph/perfect_matching.h"
#include "ortools/linear_solver/linear_solver.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/util/saturated_arithmetic.h"

namespace operations_research {

using ::util::CompleteGraph;

template <typename CostType, typename ArcIndex = int64,
          typename NodeIndex = int32,
          typename CostFunction = std::function<CostType(NodeIndex, NodeIndex)>>
class ChristofidesPathSolver {
 public:
  enum class MatchingAlgorithm {
    MINIMUM_WEIGHT_MATCHING,
#if defined(USE_CBC) || defined(USE_SCIP)
    MINIMUM_WEIGHT_MATCHING_WITH_MIP,
#endif  // defined(USE_CBC) || defined(USE_SCIP)
    MINIMAL_WEIGHT_MATCHING,
  };
  ChristofidesPathSolver(NodeIndex num_nodes, CostFunction costs);

  // Sets the matching algorith to use. A minimum weight perfect matching
  // (MINIMUM_WEIGHT_MATCHING) guarantees the 3/2 upper bound to the optimal
  // solution. A minimal weight perfect matching (MINIMAL_WEIGHT_MATCHING)
  // finds a locally minimal weight matching which does not offer any bound
  // guarantee but, as of 1/2017, is orders of magnitude faster than the
  // minimum matching.
  // By default, MINIMAL_WEIGHT_MATCHING is selected.
  // TODO(user): Change the default when minimum matching gets faster.
  void SetMatchingAlgorithm(MatchingAlgorithm matching) {
    matching_ = matching;
  }

  // Returns the cost of the approximate TSP tour.
  CostType TravelingSalesmanCost();

  // Returns the approximate TSP tour.
  std::vector<NodeIndex> TravelingSalesmanPath();

 private:
  // Runs the Christofides algorithm.
  void Solve();

  // Safe addition operator to avoid overflows when possible.
  // template <typename T>
  // T SafeAdd(T a, T b) {
  //   return a + b;
  // }
  //template <>
  int64 SafeAdd(int64 a, int64 b) {
    return CapAdd(a, b);
  }

  // Matching algorithm to use.
  MatchingAlgorithm matching_;

  // The complete graph on the nodes of the problem.
  CompleteGraph<NodeIndex, ArcIndex> graph_;

  // Function returning the cost between nodes of the problem.
  const CostFunction costs_;

  // The cost of the computed TSP path.
  CostType tsp_cost_;

  // The path of the computed TSP,
  std::vector<NodeIndex> tsp_path_;

  // True if the TSP has been solved, false otherwise.
  bool solved_;
};

// Computes a minimum weight perfect matching on an undirected graph.
template <typename WeightFunctionType, typename GraphType>
std::vector<
    std::pair<typename GraphType::NodeIndex, typename GraphType::NodeIndex>>
ComputeMinimumWeightMatching(const GraphType& graph,
                             const WeightFunctionType& weight) {
  using ArcIndex = typename GraphType::ArcIndex;
  using NodeIndex = typename GraphType::NodeIndex;
  MinCostPerfectMatching matching(graph.num_nodes());
  for (NodeIndex tail : graph.AllNodes()) {
    for (const ArcIndex arc : graph.OutgoingArcs(tail)) {
      const NodeIndex head = graph.Head(arc);
      // Adding both arcs is redudant for MinCostPerfectMatching.
      if (tail < head) {
        matching.AddEdgeWithCost(tail, head, weight(arc));
      }
    }
  }
  MinCostPerfectMatching::Status status = matching.Solve();
  DCHECK_EQ(status, MinCostPerfectMatching::OPTIMAL);
  std::vector<std::pair<NodeIndex, NodeIndex>> match;
  for (NodeIndex tail : graph.AllNodes()) {
    const NodeIndex head = matching.Match(tail);
    if (tail < head) {  // Both arcs are matched for a given edge, we keep one.
      match.emplace_back(tail, head);
    }
  }
  return match;
}

#if defined(USE_CBC) || defined(USE_SCIP)
// Computes a minimum weight perfect matching on an undirected graph using a
// Mixed Integer Programming model.
// TODO(user): Handle infeasible cases if this algorithm is used outside of
// Christofides.
template <typename WeightFunctionType, typename GraphType>
std::vector<
    std::pair<typename GraphType::NodeIndex, typename GraphType::NodeIndex>>
ComputeMinimumWeightMatchingWithMIP(const GraphType& graph,
                                    const WeightFunctionType& weight) {
  using ArcIndex = typename GraphType::ArcIndex;
  using NodeIndex = typename GraphType::NodeIndex;
  MPModelProto model;
  model.set_maximize(false);
  // The model is composed of Boolean decision variables to select matching arcs
  // and constraints ensuring that each node appears in exactly one selected
  // arc. The objective is to minimize the sum of the weights of selected arcs.
  // It is assumed the graph is symmetrical.
  std::vector<int> variable_indices(graph.num_arcs(), -1);
  for (NodeIndex node : graph.AllNodes()) {
    // Creating arc-selection Boolean variable.
    for (const ArcIndex arc : graph.OutgoingArcs(node)) {
      const NodeIndex head = graph.Head(arc);
      if (node < head) {
        variable_indices[arc] = model.variable_size();
        MPVariableProto* const arc_var = model.add_variable();
        arc_var->set_lower_bound(0);
        arc_var->set_upper_bound(1);
        arc_var->set_is_integer(true);
        arc_var->set_objective_coefficient(weight(arc));
      }
    }
    // Creating matching constraint:
    // for all node i, sum(j) arc(i,j) + sum(j) arc(j,i) = 1
    MPConstraintProto* const one_of_ct = model.add_constraint();
    one_of_ct->set_lower_bound(1);
    one_of_ct->set_upper_bound(1);
  }
  for (NodeIndex node : graph.AllNodes()) {
    for (const ArcIndex arc : graph.OutgoingArcs(node)) {
      const NodeIndex head = graph.Head(arc);
      if (node < head) {
        const int arc_var = variable_indices[arc];
        DCHECK_GE(arc_var, 0);
        MPConstraintProto* one_of_ct = model.mutable_constraint(node);
        one_of_ct->add_var_index(arc_var);
        one_of_ct->add_coefficient(1);
        one_of_ct = model.mutable_constraint(head);
        one_of_ct->add_var_index(arc_var);
        one_of_ct->add_coefficient(1);
      }
    }
  }
#if defined(USE_SCIP)
  MPSolver mp_solver("MatchingWithSCIP",
                     MPSolver::SCIP_MIXED_INTEGER_PROGRAMMING);
#elif defined(USE_CBC)
  MPSolver mp_solver("MatchingWithCBC",
                     MPSolver::CBC_MIXED_INTEGER_PROGRAMMING);
#endif
  std::string error;
  mp_solver.LoadModelFromProto(model, &error);
  MPSolver::ResultStatus status = mp_solver.Solve();
  CHECK_EQ(status, MPSolver::OPTIMAL);
  MPSolutionResponse response;
  mp_solver.FillSolutionResponseProto(&response);
  std::vector<std::pair<NodeIndex, NodeIndex>> matching;
  for (ArcIndex arc = 0; arc < variable_indices.size(); ++arc) {
    const int arc_var = variable_indices[arc];
    if (arc_var >= 0 && response.variable_value(arc_var) > .9) {
      DCHECK_GE(response.variable_value(arc_var), 1.0 - 1e-4);
      matching.emplace_back(graph.Tail(arc), graph.Head(arc));
    }
  }
  return matching;
}
#endif  // defined(USE_CBC) || defined(USE_SCIP)

template <typename CostType, typename ArcIndex, typename NodeIndex,
          typename CostFunction>
ChristofidesPathSolver<CostType, ArcIndex, NodeIndex, CostFunction>::
    ChristofidesPathSolver(NodeIndex num_nodes, CostFunction costs)
    : matching_(MatchingAlgorithm::MINIMAL_WEIGHT_MATCHING),
      graph_(num_nodes),
      costs_(std::move(costs)),
      tsp_cost_(0),
      solved_(false) {}

template <typename CostType, typename ArcIndex, typename NodeIndex,
          typename CostFunction>
CostType ChristofidesPathSolver<CostType, ArcIndex, NodeIndex,
                                CostFunction>::TravelingSalesmanCost() {
  if (!solved_) {
    Solve();
  }
  return tsp_cost_;
}

template <typename CostType, typename ArcIndex, typename NodeIndex,
          typename CostFunction>
std::vector<NodeIndex> ChristofidesPathSolver<
    CostType, ArcIndex, NodeIndex, CostFunction>::TravelingSalesmanPath() {
  if (!solved_) {
    Solve();
  }
  return tsp_path_;
}

template <typename CostType, typename ArcIndex, typename NodeIndex,
          typename CostFunction>
void ChristofidesPathSolver<CostType, ArcIndex, NodeIndex,
                            CostFunction>::Solve() {
  const NodeIndex num_nodes = graph_.num_nodes();
  tsp_path_.clear();
  tsp_cost_ = 0;
  if (num_nodes == 1) {
    tsp_path_ = {0, 0};
  }
  if (num_nodes <= 1) {
    return;
  }
  // Compute Minimum Spanning Tree.
  const std::vector<ArcIndex> mst =
      BuildPrimMinimumSpanningTree(graph_, [this](ArcIndex arc) {
        return costs_(graph_.Tail(arc), graph_.Head(arc));
      });
  // Detect odd degree nodes.
  std::vector<NodeIndex> degrees(num_nodes, 0);
  for (ArcIndex arc : mst) {
    degrees[graph_.Tail(arc)]++;
    degrees[graph_.Head(arc)]++;
  }
  std::vector<NodeIndex> odd_degree_nodes;
  for (int i = 0; i < degrees.size(); ++i) {
    if (degrees[i] % 2 != 0) {
      odd_degree_nodes.push_back(i);
    }
  }
  // Find minimum-weight perfect matching on odd-degree-node complete graph.
  // TODO(user): Make this code available as an independent algorithm.
  const NodeIndex reduced_size = odd_degree_nodes.size();
  DCHECK_NE(0, reduced_size);
  CompleteGraph<NodeIndex, ArcIndex> reduced_graph(reduced_size);
  std::vector<std::pair<NodeIndex, NodeIndex>> closure_arcs;
  switch (matching_) {
    case MatchingAlgorithm::MINIMUM_WEIGHT_MATCHING: {
      closure_arcs = ComputeMinimumWeightMatching(
          reduced_graph, [this, &reduced_graph,
                          &odd_degree_nodes](CompleteGraph<>::ArcIndex arc) {
            return costs_(odd_degree_nodes[reduced_graph.Tail(arc)],
                          odd_degree_nodes[reduced_graph.Head(arc)]);
          });
      break;
    }
#if defined(USE_CBC) || defined(USE_SCIP)
    case MatchingAlgorithm::MINIMUM_WEIGHT_MATCHING_WITH_MIP: {
      closure_arcs = ComputeMinimumWeightMatchingWithMIP(
          reduced_graph, [this, &reduced_graph,
                          &odd_degree_nodes](CompleteGraph<>::ArcIndex arc) {
            return costs_(odd_degree_nodes[reduced_graph.Tail(arc)],
                          odd_degree_nodes[reduced_graph.Head(arc)]);
          });
      break;
    }
#endif  // defined(USE_CBC) || defined(USE_SCIP)
    case MatchingAlgorithm::MINIMAL_WEIGHT_MATCHING: {
      // TODO(user): Cost caching was added and can gain up to 20% but
      // increases memory usage; see if we can avoid caching.
      std::vector<ArcIndex> ordered_arcs(reduced_graph.num_arcs());
      std::vector<CostType> ordered_arc_costs(reduced_graph.num_arcs(), 0);
      for (const ArcIndex arc : reduced_graph.AllForwardArcs()) {
        ordered_arcs[arc] = arc;
        ordered_arc_costs[arc] =
            costs_(odd_degree_nodes[reduced_graph.Tail(arc)],
                   odd_degree_nodes[reduced_graph.Head(arc)]);
      }
      std::sort(ordered_arcs.begin(), ordered_arcs.end(),
                [&ordered_arc_costs](ArcIndex arc_a, ArcIndex arc_b) {
                  return ordered_arc_costs[arc_a] < ordered_arc_costs[arc_b];
                });
      std::vector<bool> touched_nodes(reduced_size, false);
      for (ArcIndex arc_index = 0; closure_arcs.size() * 2 < reduced_size;
           ++arc_index) {
        const ArcIndex arc = ordered_arcs[arc_index];
        const NodeIndex tail = reduced_graph.Tail(arc);
        const NodeIndex head = reduced_graph.Head(arc);
        if (head != tail && !touched_nodes[tail] && !touched_nodes[head]) {
          touched_nodes[tail] = true;
          touched_nodes[head] = true;
          closure_arcs.emplace_back(tail, head);
        }
      }
      break;
    }
  }
  // Build Eulerian path on minimum spanning tree + closing edges from matching
  // and extract a solution to the Traveling Salesman from the path by skipping
  // duplicate nodes.
  ::util::ReverseArcListGraph<NodeIndex, ArcIndex> egraph(
      num_nodes, closure_arcs.size() + mst.size());
  for (ArcIndex arc : mst) {
    egraph.AddArc(graph_.Tail(arc), graph_.Head(arc));
  }
  for (const auto arc : closure_arcs) {
    egraph.AddArc(odd_degree_nodes[arc.first], odd_degree_nodes[arc.second]);
  }
  std::vector<bool> touched(num_nodes, false);
  DCHECK(IsEulerianGraph(egraph));
  for (const NodeIndex node : BuildEulerianTourFromNode(egraph, 0)) {
    if (touched[node]) continue;
    touched[node] = true;
    tsp_cost_ = SafeAdd(tsp_cost_,
                        tsp_path_.empty() ? 0 : costs_(tsp_path_.back(), node));
    tsp_path_.push_back(node);
  }
  tsp_cost_ =
      SafeAdd(tsp_cost_, tsp_path_.empty() ? 0 : costs_(tsp_path_.back(), 0));
  tsp_path_.push_back(0);
  solved_ = true;
}
}  // namespace operations_research

#endif  // OR_TOOLS_GRAPH_CHRISTOFIDES_H_