TriangularSolverMatrix.h 13.1 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H

namespace internal {

// if the rhs is row major, let's transpose the product
template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index cols,
    const Scalar*  tri, Index triStride,
    Scalar* _other, Index otherStride)
  {
    triangular_solve_matrix<
      Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
      (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
      NumTraits<Scalar>::IsComplex && Conjugate,
      TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
      ::run(size, cols, tri, triStride, _other, otherStride);
  }
};

/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
 */
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index otherSize,
    const Scalar* _tri, Index triStride,
    Scalar* _other, Index otherStride)
  {
    Index cols = otherSize;
    const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
    blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);

    typedef gebp_traits<Scalar,Scalar> Traits;
    enum {
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower
    };

    Index kc = size; // cache block size along the K direction
    Index mc = size;  // cache block size along the M direction
    Index nc = cols;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);

    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*cols;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
    Scalar* blockB = allocatedBlockB + sizeW;

    conj_if<Conjugate> conj;
    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;

    for(Index k2=IsLower ? 0 : size;
        IsLower ? k2<size : k2>0;
        IsLower ? k2+=kc : k2-=kc)
    {
      const Index actual_kc = std::min(IsLower ? size-k2 : k2, kc);

      // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
      // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
      // A11 (the triangular part) and A21 the remaining rectangular part.
      // Then the high level algorithm is:
      //  - B = R1                    => general block copy (done during the next step)
      //  - R1 = L1^-1 B              => tricky part
      //  - update B from the new R1  => actually this has to be performed continuously during the above step
      //  - R2 = L2 * B               => GEPP

      // The tricky part: compute R1 = L1^-1 B while updating B from R1
      // The idea is to split L1 into multiple small vertical panels.
      // Each panel can be split into a small triangular part A1 which is processed without optimization,
      // and the remaining small part A2 which is processed using gebp with appropriate block strides
      {
        // for each small vertical panels of lhs
        for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
          // tr solve
          for (Index k=0; k<actualPanelWidth; ++k)
          {
            // TODO write a small kernel handling this (can be shared with trsv)
            Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
            Index s  = IsLower ? k2+k1 : i+1;
            Index rs = actualPanelWidth - k - 1; // remaining size

            Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
            for (Index j=0; j<cols; ++j)
            {
              if (TriStorageOrder==RowMajor)
              {
                Scalar b = 0;
                const Scalar* l = &tri(i,s);
                Scalar* r = &other(s,j);
                for (Index i3=0; i3<k; ++i3)
                  b += conj(l[i3]) * r[i3];

                other(i,j) = (other(i,j) - b)*a;
              }
              else
              {
                Index s = IsLower ? i+1 : i-rs;
                Scalar b = (other(i,j) *= a);
                Scalar* r = &other(s,j);
                const Scalar* l = &tri(s,i);
                for (Index i3=0;i3<rs;++i3)
                  r[i3] -= b * conj(l[i3]);
              }
            }
          }

          Index lengthTarget = actual_kc-k1-actualPanelWidth;
          Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
          Index blockBOffset = IsLower ? k1 : lengthTarget;

          // update the respective rows of B from other
          pack_rhs(blockB, _other+startBlock, otherStride, actualPanelWidth, cols, actual_kc, blockBOffset);

          // GEBP
          if (lengthTarget>0)
          {
            Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;

            pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);

            gebp_kernel(_other+startTarget, otherStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, Scalar(-1),
                        actualPanelWidth, actual_kc, 0, blockBOffset);
          }
        }
      }

      // R2 = A2 * B => GEPP
      {
        Index start = IsLower ? k2+kc : 0;
        Index end   = IsLower ? size : k2-kc;
        for(Index i2=start; i2<end; i2+=mc)
        {
          const Index actual_mc = std::min(mc,end-i2);
          if (actual_mc>0)
          {
            pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);

            gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1));
          }
        }
      }
    }
  }
};

/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
 */
template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
{
  static EIGEN_DONT_INLINE void run(
    Index size, Index otherSize,
    const Scalar* _tri, Index triStride,
    Scalar* _other, Index otherStride)
  {
    Index rows = otherSize;
    const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
    blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);

    typedef gebp_traits<Scalar,Scalar> Traits;
    enum {
      RhsStorageOrder   = TriStorageOrder,
      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
      IsLower = (Mode&Lower) == Lower
    };

//     Index kc = std::min<Index>(Traits::Max_kc/4,size); // cache block size along the K direction
//     Index mc = std::min<Index>(Traits::Max_mc,size);   // cache block size along the M direction
    // check that !!!!
    Index kc = size; // cache block size along the K direction
    Index mc = size;  // cache block size along the M direction
    Index nc = rows;  // cache block size along the N direction
    computeProductBlockingSizes<Scalar,Scalar,4>(kc, mc, nc);

    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    std::size_t sizeB = sizeW + kc*size;
    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
    ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);
    Scalar* blockB = allocatedBlockB + sizeW;

    conj_if<Conjugate> conj;
    gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;

    for(Index k2=IsLower ? size : 0;
        IsLower ? k2>0 : k2<size;
        IsLower ? k2-=kc : k2+=kc)
    {
      const Index actual_kc = std::min(IsLower ? k2 : size-k2, kc);
      Index actual_k2 = IsLower ? k2-actual_kc : k2 ;

      Index startPanel = IsLower ? 0 : k2+actual_kc;
      Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
      Scalar* geb = blockB+actual_kc*actual_kc;

      if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);

      // triangular packing (we only pack the panels off the diagonal,
      // neglecting the blocks overlapping the diagonal
      {
        for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
        {
          Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
          Index actual_j2 = actual_k2 + j2;
          Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
          Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;

          if (panelLength>0)
          pack_rhs_panel(blockB+j2*actual_kc,
                         &rhs(actual_k2+panelOffset, actual_j2), triStride,
                         panelLength, actualPanelWidth,
                         actual_kc, panelOffset);
        }
      }

      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = std::min(mc,rows-i2);

        // triangular solver kernel
        {
          // for each small block of the diagonal (=> vertical panels of rhs)
          for (Index j2 = IsLower
                      ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
                                                                  : Index(SmallPanelWidth)))
                      : 0;
               IsLower ? j2>=0 : j2<actual_kc;
               IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
          {
            Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
            Index absolute_j2 = actual_k2 + j2;
            Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
            Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;

            // GEBP
            if(panelLength>0)
            {
              gebp_kernel(&lhs(i2,absolute_j2), otherStride,
                          blockA, blockB+j2*actual_kc,
                          actual_mc, panelLength, actualPanelWidth,
                          Scalar(-1),
                          actual_kc, actual_kc, // strides
                          panelOffset, panelOffset, // offsets
                          allocatedBlockB);  // workspace
            }

            // unblocked triangular solve
            for (Index k=0; k<actualPanelWidth; ++k)
            {
              Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;

              Scalar* r = &lhs(i2,j);
              for (Index k3=0; k3<k; ++k3)
              {
                Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
                Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
                for (Index i=0; i<actual_mc; ++i)
                  r[i] -= a[i] * b;
              }
              Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
              for (Index i=0; i<actual_mc; ++i)
                r[i] *= b;
            }

            // pack the just computed part of lhs to A
            pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
                           actualPanelWidth, actual_mc,
                           actual_kc, j2);
          }
        }

        if (rs>0)
          gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
                      actual_mc, actual_kc, rs, Scalar(-1),
                      -1, -1, 0, 0, allocatedBlockB);
      }
    }
  }
};

} // end namespace internal

#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H