TriangularMatrixVector.h 13.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H
#define EIGEN_TRIANGULARMATRIXVECTOR_H

namespace internal {

template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
struct product_triangular_matrix_vector;

template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct product_triangular_matrix_vector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
{
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  enum {
    IsLower = ((Mode&Lower)==Lower),
    HasUnitDiag = (Mode & UnitDiag)==UnitDiag
  };
  static EIGEN_DONT_INLINE  void run(Index rows, Index cols, const LhsScalar* _lhs, Index lhsStride,
                                     const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, ResScalar alpha)
  {
    static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;

    typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
    const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
    typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
    
    typedef Map<const Matrix<RhsScalar,Dynamic,1>, 0, InnerStride<> > RhsMap;
    const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr));
    typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);

    typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
    ResMap res(_res,rows);

    for (Index pi=0; pi<cols; pi+=PanelWidth)
    {
      Index actualPanelWidth = std::min(PanelWidth, cols-pi);
      for (Index k=0; k<actualPanelWidth; ++k)
      {
        Index i = pi + k;
        Index s = IsLower ? (HasUnitDiag ? i+1 : i ) : pi;
        Index r = IsLower ? actualPanelWidth-k : k+1;
        if ((!HasUnitDiag) || (--r)>0)
          res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r);
        if (HasUnitDiag)
          res.coeffRef(i) += alpha * cjRhs.coeff(i);
      }
      Index r = IsLower ? cols - pi - actualPanelWidth : pi;
      if (r>0)
      {
        Index s = IsLower ? pi+actualPanelWidth : 0;
        general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjLhs,RhsScalar,ConjRhs>::run(
            r, actualPanelWidth,
            &lhs.coeffRef(s,pi), lhsStride,
            &rhs.coeffRef(pi), rhsIncr,
            &res.coeffRef(s), resIncr, alpha);
      }
    }
  }
};

template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct product_triangular_matrix_vector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
{
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  enum {
    IsLower = ((Mode&Lower)==Lower),
    HasUnitDiag = (Mode & UnitDiag)==UnitDiag
  };
  static void run(Index rows, Index cols, const LhsScalar* _lhs, Index lhsStride,
                  const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, ResScalar alpha)
  {
    static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;

    typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
    const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
    typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);

    typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
    const RhsMap rhs(_rhs,cols);
    typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);

    typedef Map<Matrix<ResScalar,Dynamic,1>, 0, InnerStride<> > ResMap;
    ResMap res(_res,rows,InnerStride<>(resIncr));
    
    for (Index pi=0; pi<cols; pi+=PanelWidth)
    {
      Index actualPanelWidth = std::min(PanelWidth, cols-pi);
      for (Index k=0; k<actualPanelWidth; ++k)
      {
        Index i = pi + k;
        Index s = IsLower ? pi  : (HasUnitDiag ? i+1 : i);
        Index r = IsLower ? k+1 : actualPanelWidth-k;
        if ((!HasUnitDiag) || (--r)>0)
          res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum();
        if (HasUnitDiag)
          res.coeffRef(i) += alpha * cjRhs.coeff(i);
      }
      Index r = IsLower ? pi : cols - pi - actualPanelWidth;
      if (r>0)
      {
        Index s = IsLower ? 0 : pi + actualPanelWidth;
        general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjLhs,RhsScalar,ConjRhs>::run(
            actualPanelWidth, r,
            &lhs.coeffRef(pi,s), lhsStride,
            &rhs.coeffRef(s), rhsIncr,
            &res.coeffRef(pi), resIncr, alpha);
      }
    }
  }
};

/***************************************************************************
* Wrapper to product_triangular_vector
***************************************************************************/

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true> >
 : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true>, Lhs, Rhs> >
{};

template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false> >
 : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false>, Lhs, Rhs> >
{};


template<int StorageOrder>
struct trmv_selector;

} // end namespace internal

template<int Mode, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,true,Lhs,false,Rhs,true>
  : public ProductBase<TriangularProduct<Mode,true,Lhs,false,Rhs,true>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)

  TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
  
    internal::trmv_selector<(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dst, alpha);
  }
};

template<int Mode, typename Lhs, typename Rhs>
struct TriangularProduct<Mode,false,Lhs,true,Rhs,false>
  : public ProductBase<TriangularProduct<Mode,false,Lhs,true,Rhs,false>, Lhs, Rhs >
{
  EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)

  TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}

  template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
  {
    eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

    typedef TriangularProduct<(Mode & UnitDiag) | ((Mode & Lower) ? Upper : Lower),true,Transpose<const Rhs>,false,Transpose<const Lhs>,true> TriangularProductTranspose;
    Transpose<Dest> dstT(dst);
    internal::trmv_selector<(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>::run(
      TriangularProductTranspose(m_rhs.transpose(),m_lhs.transpose()), dstT, alpha);
  }
};

namespace internal {

// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
  
template<> struct trmv_selector<ColMajor>
{
  template<int Mode, typename Lhs, typename Rhs, typename Dest>
  static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar alpha)
  {
    typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
    typedef typename ProductType::Index Index;
    typedef typename ProductType::LhsScalar   LhsScalar;
    typedef typename ProductType::RhsScalar   RhsScalar;
    typedef typename ProductType::Scalar      ResScalar;
    typedef typename ProductType::RealScalar  RealScalar;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;

    const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
    const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
      ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
      MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
    };

    gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;

    bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
    bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
    
    RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);

    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                  evalToDest ? dest.data() : static_dest.data());

    if(!evalToDest)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      if(!alphaIsCompatible)
      {
        MappedDest(actualDestPtr, dest.size()).setZero();
        compatibleAlpha = RhsScalar(1);
      }
      else
        MappedDest(actualDestPtr, dest.size()) = dest;
    }
    
    internal::product_triangular_matrix_vector
      <Index,Mode,
       LhsScalar, LhsBlasTraits::NeedToConjugate,
       RhsScalar, RhsBlasTraits::NeedToConjugate,
       ColMajor>
      ::run(actualLhs.rows(),actualLhs.cols(),
            actualLhs.data(),actualLhs.outerStride(),
            actualRhs.data(),actualRhs.innerStride(),
            actualDestPtr,1,compatibleAlpha);

    if (!evalToDest)
    {
      if(!alphaIsCompatible)
        dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
      else
        dest = MappedDest(actualDestPtr, dest.size());
    }
  }
};

template<> struct trmv_selector<RowMajor>
{
  template<int Mode, typename Lhs, typename Rhs, typename Dest>
  static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar alpha)
  {
    typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
    typedef typename ProductType::LhsScalar LhsScalar;
    typedef typename ProductType::RhsScalar RhsScalar;
    typedef typename ProductType::Scalar    ResScalar;
    typedef typename ProductType::Index Index;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::_ActualRhsType _ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;

    typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
    };

    gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
        DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());

    if(!DirectlyUseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = actualRhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    }
    
    internal::product_triangular_matrix_vector
      <Index,Mode,
       LhsScalar, LhsBlasTraits::NeedToConjugate,
       RhsScalar, RhsBlasTraits::NeedToConjugate,
       RowMajor>
      ::run(actualLhs.rows(),actualLhs.cols(),
            actualLhs.data(),actualLhs.outerStride(),
            actualRhsPtr,1,
            dest.data(),dest.innerStride(),
            actualAlpha);
  }
};

} // end namespace internal

#endif // EIGEN_TRIANGULARMATRIXVECTOR_H