GeneralMatrixVector.h 22.4 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
#define EIGEN_GENERAL_MATRIX_VECTOR_H

namespace internal {

/* Optimized col-major matrix * vector product:
 * This algorithm processes 4 columns at onces that allows to both reduce
 * the number of load/stores of the result by a factor 4 and to reduce
 * the instruction dependency. Moreover, we know that all bands have the
 * same alignment pattern.
 *
 * Mixing type logic: C += alpha * A * B
 *  |  A  |  B  |alpha| comments
 *  |real |cplx |cplx | no vectorization
 *  |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
 *  |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
 *  |cplx |real |real | optimal case, vectorization possible via real-cplx mul
 */
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;

enum {
  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
              && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};

typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
typedef typename packet_traits<ResScalar>::type  _ResPacket;

typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;

EIGEN_DONT_INLINE static void run(
  Index rows, Index cols,
  const LhsScalar* lhs, Index lhsStride,
  const RhsScalar* rhs, Index rhsIncr,
  ResScalar* res, Index
  #ifdef EIGEN_INTERNAL_DEBUGGING
    resIncr
  #endif
  , RhsScalar alpha)
{
  eigen_internal_assert(resIncr==1);
  #ifdef _EIGEN_ACCUMULATE_PACKETS
  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
  #endif
  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
    pstore(&res[j], \
      padd(pload<ResPacket>(&res[j]), \
        padd( \
          padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]),    ptmp0), \
                  pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]),   ptmp1)), \
          padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]),    ptmp2), \
                  pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]),   ptmp3)) )))

  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
  if(ConjugateRhs)
    alpha = conj(alpha);

  enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
  const Index columnsAtOnce = 4;
  const Index peels = 2;
  const Index LhsPacketAlignedMask = LhsPacketSize-1;
  const Index ResPacketAlignedMask = ResPacketSize-1;
  const Index PeelAlignedMask = ResPacketSize*peels-1;
  const Index size = rows;
  
  // How many coeffs of the result do we have to skip to be aligned.
  // Here we assume data are at least aligned on the base scalar type.
  Index alignedStart = first_aligned(res,size);
  Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
  const Index peeledSize  = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;

  const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
  Index alignmentPattern = alignmentStep==0 ? AllAligned
                       : alignmentStep==(LhsPacketSize/2) ? EvenAligned
                       : FirstAligned;

  // we cannot assume the first element is aligned because of sub-matrices
  const Index lhsAlignmentOffset = first_aligned(lhs,size);

  // find how many columns do we have to skip to be aligned with the result (if possible)
  Index skipColumns = 0;
  // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
  if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
  {
    alignedSize = 0;
    alignedStart = 0;
  }
  else if (LhsPacketSize>1)
  {
    eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);

    while (skipColumns<LhsPacketSize &&
          alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
      ++skipColumns;
    if (skipColumns==LhsPacketSize)
    {
      // nothing can be aligned, no need to skip any column
      alignmentPattern = NoneAligned;
      skipColumns = 0;
    }
    else
    {
      skipColumns = std::min(skipColumns,cols);
      // note that the skiped columns are processed later.
    }

    eigen_internal_assert(  (alignmentPattern==NoneAligned)
                      || (skipColumns + columnsAtOnce >= cols)
                      || LhsPacketSize > size
                      || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
  }
  else if(Vectorizable)
  {
    alignedStart = 0;
    alignedSize = size;
    alignmentPattern = AllAligned;
  }

  Index offset1 = (FirstAligned && alignmentStep==1?3:1);
  Index offset3 = (FirstAligned && alignmentStep==1?1:3);

  Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
  for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
  {
    RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
              ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
              ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
              ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);

    // this helps a lot generating better binary code
    const LhsScalar *lhs0 = lhs + i*lhsStride,     *lhs1 = lhs + (i+offset1)*lhsStride,
                    *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;

    if (Vectorizable)
    {
      /* explicit vectorization */
      // process initial unaligned coeffs
      for (Index j=0; j<alignedStart; ++j)
      {
        res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
        res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
        res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
        res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
      }

      if (alignedSize>alignedStart)
      {
        switch(alignmentPattern)
        {
          case AllAligned:
            for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,d,d);
            break;
          case EvenAligned:
            for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,d);
            break;
          case FirstAligned:
            if(peels>1)
            {
              LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
              ResPacket T0, T1;

              A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
              A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
              A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);

              for (Index j = alignedStart; j<peeledSize; j+=peels*ResPacketSize)
              {
                A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]);  palign<1>(A01,A11);
                A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]);  palign<2>(A02,A12);
                A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]);  palign<3>(A03,A13);

                A00 = pload<LhsPacket>(&lhs0[j]);
                A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
                T0  = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
                T1  = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));

                T0  = pcj.pmadd(A01, ptmp1, T0);
                A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]);  palign<1>(A11,A01);
                T0  = pcj.pmadd(A02, ptmp2, T0);
                A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]);  palign<2>(A12,A02);
                T0  = pcj.pmadd(A03, ptmp3, T0);
                pstore(&res[j],T0);
                A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]);  palign<3>(A13,A03);
                T1  = pcj.pmadd(A11, ptmp1, T1);
                T1  = pcj.pmadd(A12, ptmp2, T1);
                T1  = pcj.pmadd(A13, ptmp3, T1);
                pstore(&res[j+ResPacketSize],T1);
              }
            }
            for (Index j = peeledSize; j<alignedSize; j+=ResPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,du);
            break;
          default:
            for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(du,du,du);
            break;
        }
      }
    } // end explicit vectorization

    /* process remaining coeffs (or all if there is no explicit vectorization) */
    for (Index j=alignedSize; j<size; ++j)
    {
      res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
      res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
      res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
      res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
    }
  }

  // process remaining first and last columns (at most columnsAtOnce-1)
  Index end = cols;
  Index start = columnBound;
  do
  {
    for (Index k=start; k<end; ++k)
    {
      RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
      const LhsScalar* lhs0 = lhs + k*lhsStride;

      if (Vectorizable)
      {
        /* explicit vectorization */
        // process first unaligned result's coeffs
        for (Index j=0; j<alignedStart; ++j)
          res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
        // process aligned result's coeffs
        if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
          for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
            pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
        else
          for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
            pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
      }

      // process remaining scalars (or all if no explicit vectorization)
      for (Index i=alignedSize; i<size; ++i)
        res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
    }
    if (skipColumns)
    {
      start = 0;
      end = skipColumns;
      skipColumns = 0;
    }
    else
      break;
  } while(Vectorizable);
  #undef _EIGEN_ACCUMULATE_PACKETS
}
};

/* Optimized row-major matrix * vector product:
 * This algorithm processes 4 rows at onces that allows to both reduce
 * the number of load/stores of the result by a factor 4 and to reduce
 * the instruction dependency. Moreover, we know that all bands have the
 * same alignment pattern.
 *
 * Mixing type logic:
 *  - alpha is always a complex (or converted to a complex)
 *  - no vectorization
 */
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs>
struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;

enum {
  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
              && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
};

typedef typename packet_traits<LhsScalar>::type  _LhsPacket;
typedef typename packet_traits<RhsScalar>::type  _RhsPacket;
typedef typename packet_traits<ResScalar>::type  _ResPacket;

typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
  
EIGEN_DONT_INLINE static void run(
  Index rows, Index cols,
  const LhsScalar* lhs, Index lhsStride,
  const RhsScalar* rhs, Index rhsIncr,
  ResScalar* res, Index resIncr,
  ResScalar alpha)
{
  EIGEN_UNUSED_VARIABLE(rhsIncr);
  eigen_internal_assert(rhsIncr==1);
  #ifdef _EIGEN_ACCUMULATE_PACKETS
  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
  #endif

  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
    RhsPacket b = pload<RhsPacket>(&rhs[j]); \
    ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
    ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
    ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
    ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }

  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;

  enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
  const Index rowsAtOnce = 4;
  const Index peels = 2;
  const Index RhsPacketAlignedMask = RhsPacketSize-1;
  const Index LhsPacketAlignedMask = LhsPacketSize-1;
  const Index PeelAlignedMask = RhsPacketSize*peels-1;
  const Index depth = cols;

  // How many coeffs of the result do we have to skip to be aligned.
  // Here we assume data are at least aligned on the base scalar type
  // if that's not the case then vectorization is discarded, see below.
  Index alignedStart = first_aligned(rhs, depth);
  Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
  const Index peeledSize  = peels>1 ? alignedStart + ((alignedSize-alignedStart) & ~PeelAlignedMask) : alignedStart;

  const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
  Index alignmentPattern = alignmentStep==0 ? AllAligned
                         : alignmentStep==(LhsPacketSize/2) ? EvenAligned
                         : FirstAligned;

  // we cannot assume the first element is aligned because of sub-matrices
  const Index lhsAlignmentOffset = first_aligned(lhs,depth);

  // find how many rows do we have to skip to be aligned with rhs (if possible)
  Index skipRows = 0;
  // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
  if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
  {
    alignedSize = 0;
    alignedStart = 0;
  }
  else if (LhsPacketSize>1)
  {
    eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0  || depth<LhsPacketSize);

    while (skipRows<LhsPacketSize &&
           alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
      ++skipRows;
    if (skipRows==LhsPacketSize)
    {
      // nothing can be aligned, no need to skip any column
      alignmentPattern = NoneAligned;
      skipRows = 0;
    }
    else
    {
      skipRows = std::min(skipRows,Index(rows));
      // note that the skiped columns are processed later.
    }
    eigen_internal_assert(  alignmentPattern==NoneAligned
                      || LhsPacketSize==1
                      || (skipRows + rowsAtOnce >= rows)
                      || LhsPacketSize > depth
                      || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
  }
  else if(Vectorizable)
  {
    alignedStart = 0;
    alignedSize = depth;
    alignmentPattern = AllAligned;
  }

  Index offset1 = (FirstAligned && alignmentStep==1?3:1);
  Index offset3 = (FirstAligned && alignmentStep==1?1:3);

  Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
  for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
  {
    EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
    ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);

    // this helps the compiler generating good binary code
    const LhsScalar *lhs0 = lhs + i*lhsStride,     *lhs1 = lhs + (i+offset1)*lhsStride,
                    *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;

    if (Vectorizable)
    {
      /* explicit vectorization */
      ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
                ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));

      // process initial unaligned coeffs
      // FIXME this loop get vectorized by the compiler !
      for (Index j=0; j<alignedStart; ++j)
      {
        RhsScalar b = rhs[j];
        tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
        tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
      }

      if (alignedSize>alignedStart)
      {
        switch(alignmentPattern)
        {
          case AllAligned:
            for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,d,d);
            break;
          case EvenAligned:
            for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,d);
            break;
          case FirstAligned:
            if (peels>1)
            {
              /* Here we proccess 4 rows with with two peeled iterations to hide
               * tghe overhead of unaligned loads. Moreover unaligned loads are handled
               * using special shift/move operations between the two aligned packets
               * overlaping the desired unaligned packet. This is *much* more efficient
               * than basic unaligned loads.
               */
              LhsPacket A01, A02, A03, A11, A12, A13;
              A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
              A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
              A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);

              for (Index j = alignedStart; j<peeledSize; j+=peels*RhsPacketSize)
              {
                RhsPacket b = pload<RhsPacket>(&rhs[j]);
                A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]);  palign<1>(A01,A11);
                A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]);  palign<2>(A02,A12);
                A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]);  palign<3>(A03,A13);

                ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
                ptmp1 = pcj.pmadd(A01, b, ptmp1);
                A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]);  palign<1>(A11,A01);
                ptmp2 = pcj.pmadd(A02, b, ptmp2);
                A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]);  palign<2>(A12,A02);
                ptmp3 = pcj.pmadd(A03, b, ptmp3);
                A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]);  palign<3>(A13,A03);

                b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
                ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
                ptmp1 = pcj.pmadd(A11, b, ptmp1);
                ptmp2 = pcj.pmadd(A12, b, ptmp2);
                ptmp3 = pcj.pmadd(A13, b, ptmp3);
              }
            }
            for (Index j = peeledSize; j<alignedSize; j+=RhsPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(d,du,du);
            break;
          default:
            for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
              _EIGEN_ACCUMULATE_PACKETS(du,du,du);
            break;
        }
        tmp0 += predux(ptmp0);
        tmp1 += predux(ptmp1);
        tmp2 += predux(ptmp2);
        tmp3 += predux(ptmp3);
      }
    } // end explicit vectorization

    // process remaining coeffs (or all if no explicit vectorization)
    // FIXME this loop get vectorized by the compiler !
    for (Index j=alignedSize; j<depth; ++j)
    {
      RhsScalar b = rhs[j];
      tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
      tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
    }
    res[i*resIncr]            += alpha*tmp0;
    res[(i+offset1)*resIncr]  += alpha*tmp1;
    res[(i+2)*resIncr]        += alpha*tmp2;
    res[(i+offset3)*resIncr]  += alpha*tmp3;
  }

  // process remaining first and last rows (at most columnsAtOnce-1)
  Index end = rows;
  Index start = rowBound;
  do
  {
    for (Index i=start; i<end; ++i)
    {
      EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
      ResPacket ptmp0 = pset1<ResPacket>(tmp0);
      const LhsScalar* lhs0 = lhs + i*lhsStride;
      // process first unaligned result's coeffs
      // FIXME this loop get vectorized by the compiler !
      for (Index j=0; j<alignedStart; ++j)
        tmp0 += cj.pmul(lhs0[j], rhs[j]);

      if (alignedSize>alignedStart)
      {
        // process aligned rhs coeffs
        if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
          for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
            ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
        else
          for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
            ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
        tmp0 += predux(ptmp0);
      }

      // process remaining scalars
      // FIXME this loop get vectorized by the compiler !
      for (Index j=alignedSize; j<depth; ++j)
        tmp0 += cj.pmul(lhs0[j], rhs[j]);
      res[i*resIncr] += alpha*tmp0;
    }
    if (skipRows)
    {
      start = 0;
      end = skipRows;
      skipRows = 0;
    }
    else
      break;
  } while(Vectorizable);

  #undef _EIGEN_ACCUMULATE_PACKETS
}
};

} // end namespace internal

#endif // EIGEN_GENERAL_MATRIX_VECTOR_H