GeneralMatrixMatrix.h 16.2 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
#define EIGEN_GENERAL_MATRIX_MATRIX_H

namespace internal {

template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;

/* Specialization for a row-major destination matrix => simple transposition of the product */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
{
  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
  static EIGEN_STRONG_INLINE void run(
    Index rows, Index cols, Index depth,
    const LhsScalar* lhs, Index lhsStride,
    const RhsScalar* rhs, Index rhsStride,
    ResScalar* res, Index resStride,
    ResScalar alpha,
    level3_blocking<RhsScalar,LhsScalar>& blocking,
    GemmParallelInfo<Index>* info = 0)
  {
    // transpose the product such that the result is column major
    general_matrix_matrix_product<Index,
      RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
      LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
      ColMajor>
    ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
  }
};

/*  Specialization for a col-major destination matrix
 *    => Blocking algorithm following Goto's paper */
template<
  typename Index,
  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static void run(Index rows, Index cols, Index depth,
  const LhsScalar* _lhs, Index lhsStride,
  const RhsScalar* _rhs, Index rhsStride,
  ResScalar* res, Index resStride,
  ResScalar alpha,
  level3_blocking<LhsScalar,RhsScalar>& blocking,
  GemmParallelInfo<Index>* info = 0)
{
  const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
  const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);

  typedef gebp_traits<LhsScalar,RhsScalar> Traits;

  Index kc = blocking.kc();                 // cache block size along the K direction
  Index mc = std::min(rows,blocking.mc());  // cache block size along the M direction
  //Index nc = blocking.nc(); // cache block size along the N direction

  gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
  gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
  gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;

#ifdef EIGEN_HAS_OPENMP
  if(info)
  {
    // this is the parallel version!
    Index tid = omp_get_thread_num();
    Index threads = omp_get_num_threads();
    
    std::size_t sizeA = kc*mc;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
    ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
    
    RhsScalar* blockB = blocking.blockB();
    eigen_internal_assert(blockB!=0);

    // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
    for(Index k=0; k<depth; k+=kc)
    {
      const Index actual_kc = std::min(k+kc,depth)-k; // => rows of B', and cols of the A'

      // In order to reduce the chance that a thread has to wait for the other,
      // let's start by packing A'.
      pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);

      // Pack B_k to B' in a parallel fashion:
      // each thread packs the sub block B_k,j to B'_j where j is the thread id.

      // However, before copying to B'_j, we have to make sure that no other thread is still using it,
      // i.e., we test that info[tid].users equals 0.
      // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
      while(info[tid].users!=0) {}
      info[tid].users += threads;

      pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);

      // Notify the other threads that the part B'_j is ready to go.
      info[tid].sync = k;

      // Computes C_i += A' * B' per B'_j
      for(Index shift=0; shift<threads; ++shift)
      {
        Index j = (tid+shift)%threads;

        // At this point we have to make sure that B'_j has been updated by the thread j,
        // we use testAndSetOrdered to mimic a volatile access.
        // However, no need to wait for the B' part which has been updated by the current thread!
        if(shift>0)
          while(info[j].sync!=k) {}

        gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
      }

      // Then keep going as usual with the remaining A'
      for(Index i=mc; i<rows; i+=mc)
      {
        const Index actual_mc = std::min(i+mc,rows)-i;

        // pack A_i,k to A'
        pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);

        // C_i += A' * B'
        gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
      }

      // Release all the sub blocks B'_j of B' for the current thread,
      // i.e., we simply decrement the number of users by 1
      for(Index j=0; j<threads; ++j)
        #pragma omp atomic
        --(info[j].users);
    }
  }
  else
#endif // EIGEN_HAS_OPENMP
  {
    EIGEN_UNUSED_VARIABLE(info);

    // this is the sequential version!
    std::size_t sizeA = kc*mc;
    std::size_t sizeB = kc*cols;
    std::size_t sizeW = kc*Traits::WorkSpaceFactor;

    ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
    ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());

    // For each horizontal panel of the rhs, and corresponding panel of the lhs...
    // (==GEMM_VAR1)
    for(Index k2=0; k2<depth; k2+=kc)
    {
      const Index actual_kc = std::min(k2+kc,depth)-k2;

      // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
      // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
      // Note that this panel will be read as many times as the number of blocks in the lhs's
      // vertical panel which is, in practice, a very low number.
      pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);


      // For each mc x kc block of the lhs's vertical panel...
      // (==GEPP_VAR1)
      for(Index i2=0; i2<rows; i2+=mc)
      {
        const Index actual_mc = std::min(i2+mc,rows)-i2;

        // We pack the lhs's block into a sequential chunk of memory (L1 caching)
        // Note that this block will be read a very high number of times, which is equal to the number of
        // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
        pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);

        // Everything is packed, we can now call the block * panel kernel:
        gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);

      }
    }
  }
}

};

/*********************************************************************************
*  Specialization of GeneralProduct<> for "large" GEMM, i.e.,
*  implementation of the high level wrapper to general_matrix_matrix_product
**********************************************************************************/

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
{};

template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
struct gemm_functor
{
  gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, Scalar actualAlpha,
                  BlockingType& blocking)
    : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
  {}

  void initParallelSession() const
  {
    m_blocking.allocateB();
  }

  void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
  {
    if(cols==-1)
      cols = m_rhs.cols();

    Gemm::run(rows, cols, m_lhs.cols(),
              /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
              /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
              (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
              m_actualAlpha, m_blocking, info);
  }

  protected:
    const Lhs& m_lhs;
    const Rhs& m_rhs;
    Dest& m_dest;
    Scalar m_actualAlpha;
    BlockingType& m_blocking;
};

template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth,
bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;

template<typename _LhsScalar, typename _RhsScalar>
class level3_blocking
{
    typedef _LhsScalar LhsScalar;
    typedef _RhsScalar RhsScalar;

  protected:
    LhsScalar* m_blockA;
    RhsScalar* m_blockB;
    RhsScalar* m_blockW;

    DenseIndex m_mc;
    DenseIndex m_nc;
    DenseIndex m_kc;

  public:

    level3_blocking()
      : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
    {}

    inline DenseIndex mc() const { return m_mc; }
    inline DenseIndex nc() const { return m_nc; }
    inline DenseIndex kc() const { return m_kc; }

    inline LhsScalar* blockA() { return m_blockA; }
    inline RhsScalar* blockB() { return m_blockB; }
    inline RhsScalar* blockW() { return m_blockW; }
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, true>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor,
      ActualRows = Transpose ? MaxCols : MaxRows,
      ActualCols = Transpose ? MaxRows : MaxCols
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;
    enum {
      SizeA = ActualRows * MaxDepth,
      SizeB = ActualCols * MaxDepth,
      SizeW = MaxDepth * Traits::WorkSpaceFactor
    };

    EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
    EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
    EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];

  public:

    gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
    {
      this->m_mc = ActualRows;
      this->m_nc = ActualCols;
      this->m_kc = MaxDepth;
      this->m_blockA = m_staticA;
      this->m_blockB = m_staticB;
      this->m_blockW = m_staticW;
    }

    inline void allocateA() {}
    inline void allocateB() {}
    inline void allocateW() {}
    inline void allocateAll() {}
};

template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth>
class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, false>
  : public level3_blocking<
      typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
      typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
{
    enum {
      Transpose = StorageOrder==RowMajor
    };
    typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
    typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
    typedef gebp_traits<LhsScalar,RhsScalar> Traits;

    DenseIndex m_sizeA;
    DenseIndex m_sizeB;
    DenseIndex m_sizeW;

  public:

    gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
    {
      this->m_mc = Transpose ? cols : rows;
      this->m_nc = Transpose ? rows : cols;
      this->m_kc = depth;

      computeProductBlockingSizes<LhsScalar,RhsScalar>(this->m_kc, this->m_mc, this->m_nc);
      m_sizeA = this->m_mc * this->m_kc;
      m_sizeB = this->m_kc * this->m_nc;
      m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
    }

    void allocateA()
    {
      if(this->m_blockA==0)
        this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
    }

    void allocateB()
    {
      if(this->m_blockB==0)
        this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
    }

    void allocateW()
    {
      if(this->m_blockW==0)
        this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
    }

    void allocateAll()
    {
      allocateA();
      allocateB();
      allocateW();
    }

    ~gemm_blocking_space()
    {
      aligned_delete(this->m_blockA, m_sizeA);
      aligned_delete(this->m_blockB, m_sizeB);
      aligned_delete(this->m_blockW, m_sizeW);
    }
};

} // end namespace internal

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemmProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
{
    enum {
      MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
    };
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
    
    typedef typename  Lhs::Scalar LhsScalar;
    typedef typename  Rhs::Scalar RhsScalar;
    typedef           Scalar      ResScalar;

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
      typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
      EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
    }

    template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
    {
      eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());

      const ActualLhsType lhs = LhsBlasTraits::extract(m_lhs);
      const ActualRhsType rhs = RhsBlasTraits::extract(m_rhs);

      Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
                                 * RhsBlasTraits::extractScalarFactor(m_rhs);

      typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
              Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;

      typedef internal::gemm_functor<
        Scalar, Index,
        internal::general_matrix_matrix_product<
          Index,
          LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
          RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
          (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
        _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;

      BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());

      internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
    }
};

#endif // EIGEN_GENERAL_MATRIX_MATRIX_H