CoeffBasedProduct.h 18.7 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_COEFFBASED_PRODUCT_H
#define EIGEN_COEFFBASED_PRODUCT_H

namespace internal {

/*********************************************************************************
*  Coefficient based product implementation.
*  It is designed for the following use cases:
*  - small fixed sizes
*  - lazy products
*********************************************************************************/

/* Since the all the dimensions of the product are small, here we can rely
 * on the generic Assign mechanism to evaluate the product per coeff (or packet).
 *
 * Note that here the inner-loops should always be unrolled.
 */

template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl;

template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl;

template<typename LhsNested, typename RhsNested, int NestingFlags>
struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
{
  typedef MatrixXpr XprKind;
  typedef typename remove_all<LhsNested>::type _LhsNested;
  typedef typename remove_all<RhsNested>::type _RhsNested;
  typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
  typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
                                           typename traits<_RhsNested>::StorageKind>::ret StorageKind;
  typedef typename promote_index_type<typename traits<_LhsNested>::Index,
                                         typename traits<_RhsNested>::Index>::type Index;

  enum {
      LhsCoeffReadCost = _LhsNested::CoeffReadCost,
      RhsCoeffReadCost = _RhsNested::CoeffReadCost,
      LhsFlags = _LhsNested::Flags,
      RhsFlags = _RhsNested::Flags,

      RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
      ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
      InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),

      MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,

      LhsRowMajor = LhsFlags & RowMajorBit,
      RhsRowMajor = RhsFlags & RowMajorBit,

      SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,

      CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
                      && (ColsAtCompileTime == Dynamic
                          || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
                              && (RhsFlags&AlignedBit)
                             )
                         ),

      CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
                      && (RowsAtCompileTime == Dynamic
                          || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
                              && (LhsFlags&AlignedBit)
                             )
                         ),

      EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
                     : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
                     : (RhsRowMajor && !CanVectorizeLhs),

      Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
            | (EvalToRowMajor ? RowMajorBit : 0)
            | NestingFlags
            | (LhsFlags & RhsFlags & AlignedBit)
            // TODO enable vectorization for mixed types
            | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),

      CoeffReadCost = InnerSize == Dynamic ? Dynamic
                    : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
                      + (InnerSize - 1) * NumTraits<Scalar>::AddCost,

      /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
      * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
      * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
      * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
      */
      CanVectorizeInner =    SameType
                          && LhsRowMajor
                          && (!RhsRowMajor)
                          && (LhsFlags & RhsFlags & ActualPacketAccessBit)
                          && (LhsFlags & RhsFlags & AlignedBit)
                          && (InnerSize % packet_traits<Scalar>::size == 0)
    };
};

} // end namespace internal

template<typename LhsNested, typename RhsNested, int NestingFlags>
class CoeffBasedProduct
  : internal::no_assignment_operator,
    public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
{
  public:

    typedef MatrixBase<CoeffBasedProduct> Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
    typedef typename Base::PlainObject PlainObject;

  private:

    typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
    typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;

    enum {
      PacketSize = internal::packet_traits<Scalar>::size,
      InnerSize  = internal::traits<CoeffBasedProduct>::InnerSize,
      Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
      CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
    };

    typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
                                   Unroll ? InnerSize-1 : Dynamic,
                                   _LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;

    typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;

  public:

    inline CoeffBasedProduct(const CoeffBasedProduct& other)
      : Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
    {}

    template<typename Lhs, typename Rhs>
    inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
      : m_lhs(lhs), m_rhs(rhs)
    {
      // we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
      // We still allow to mix T and complex<T>.
      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      eigen_assert(lhs.cols() == rhs.rows()
        && "invalid matrix product"
        && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
    }

    EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
    EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }

    EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
    {
      Scalar res;
      ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
     * which is why we don't set the LinearAccessBit.
     */
    EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
    {
      Scalar res;
      const Index row = RowsAtCompileTime == 1 ? 0 : index;
      const Index col = RowsAtCompileTime == 1 ? index : 0;
      ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    template<int LoadMode>
    EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
    {
      PacketScalar res;
      internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
                              Unroll ? InnerSize-1 : Dynamic,
                              _LhsNested, _RhsNested, PacketScalar, LoadMode>
        ::run(row, col, m_lhs, m_rhs, res);
      return res;
    }

    // Implicit conversion to the nested type (trigger the evaluation of the product)
    EIGEN_STRONG_INLINE operator const PlainObject& () const
    {
      m_result.lazyAssign(*this);
      return m_result;
    }

    const _LhsNested& lhs() const { return m_lhs; }
    const _RhsNested& rhs() const { return m_rhs; }

    const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }

    template<int DiagonalIndex>
    const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }

    const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
    { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }

  protected:
    const LhsNested m_lhs;
    const RhsNested m_rhs;

    mutable PlainObject m_result;
};

namespace internal {

// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
template<typename Lhs, typename Rhs, int N, typename PlainObject>
struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
{
  typedef PlainObject const& type;
};

/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/

/**************************************
*** Scalar path  - no vectorization ***
**************************************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
    res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    res = lhs.coeff(row, 0) * rhs.coeff(0, col);
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
  {
    eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = lhs.coeff(row, 0) * rhs.coeff(0, col);
      for(Index i = 1; i < lhs.cols(); ++i)
        res += lhs.coeff(row, i) * rhs.coeff(i, col);
  }
};

/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
struct product_coeff_vectorized_unroller
{
  typedef typename Lhs::Index Index;
  enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
  {
    product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
    pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
  }
};

template<typename Lhs, typename Rhs, typename Packet>
struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
  {
    pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
  }
};

template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::PacketScalar Packet;
  typedef typename Lhs::Index Index;
  enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
  {
    Packet pres;
    product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
    product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
    res = predux(pres);
  }
};

template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct product_coeff_vectorized_dyn_selector
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
  }
};

// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
  }
};

template<typename Lhs, typename Rhs, int LhsRows>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
  }
};

template<typename Lhs, typename Rhs>
struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    res = lhs.transpose().cwiseProduct(rhs).sum();
  }
};

template<typename Lhs, typename Rhs, typename RetScalar>
struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
  {
    product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
  }
};

/*******************
*** Packet path  ***
*******************/

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
    res =  pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
  }
};

template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
    res =  pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
  {
    res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
  {
    eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
      for(Index i = 1; i < lhs.cols(); ++i)
        res =  pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
  }
};

template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
  typedef typename Lhs::Index Index;
  EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
  {
    eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
    res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
      for(Index i = 1; i < lhs.cols(); ++i)
        res =  pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
  }
};

} // end namespace internal

#endif // EIGEN_COEFFBASED_PRODUCT_H