Dot.h 9.54 KB
Newer Older
LM's avatar
LM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

namespace internal {

// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
         bool NeedToTranspose = T::IsVectorAtCompileTime
                && U::IsVectorAtCompileTime
                && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
                      |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
                         // revert to || as soon as not needed anymore.
                    (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
  }
};

template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
  typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
  static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
  }
};

} // end namespace internal

/** \returns the dot product of *this with other.
  *
  * \only_for_vectors
  *
  * \note If the scalar type is complex numbers, then this function returns the hermitian
  * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
  * second variable.
  *
  * \sa squaredNorm(), norm()
  */
template<typename Derived>
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
  EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);

  eigen_assert(size() == other.size());

  return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}

#ifdef EIGEN2_SUPPORT
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
  * (conjugating the second variable). Of course this only makes a difference in the complex case.
  *
  * This method is only available in EIGEN2_SUPPORT mode.
  *
  * \only_for_vectors
  *
  * \sa dot()
  */
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  eigen_assert(size() == other.size());

  return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
}
#endif


//---------- implementation of L2 norm and related functions ----------

/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
  *
  * \sa dot(), norm()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
  return internal::real((*this).cwiseAbs2().sum());
}

/** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself.
  *
  * \sa dot(), squaredNorm()
  */
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
  return internal::sqrt(squaredNorm());
}

/** \returns an expression of the quotient of *this by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalize()
  */
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
  typedef typename internal::nested<Derived>::type Nested;
  typedef typename internal::remove_reference<Nested>::type _Nested;
  _Nested n(derived());
  return n / n.norm();
}

/** Normalizes the vector, i.e. divides it by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalized()
  */
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
  *this /= norm();
}

//---------- implementation of other norms ----------

namespace internal {

template<typename Derived, int p>
struct lpNorm_selector
{
  typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
  inline static RealScalar run(const MatrixBase<Derived>& m)
  {
    return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
  inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.cwiseAbs().sum();
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
  inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.norm();
  }
};

template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
  inline static typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.cwiseAbs().maxCoeff();
  }
};

} // end namespace internal

/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
  *          of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
  *          norm, that is the maximum of the absolute values of the coefficients of *this.
  *
  * \sa norm()
  */
template<typename Derived>
template<int p>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
  return internal::lpNorm_selector<Derived, p>::run(*this);
}

//---------- implementation of isOrthogonal / isUnitary ----------

/** \returns true if *this is approximately orthogonal to \a other,
  *          within the precision given by \a prec.
  *
  * Example: \include MatrixBase_isOrthogonal.cpp
  * Output: \verbinclude MatrixBase_isOrthogonal.out
  */
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
{
  typename internal::nested<Derived,2>::type nested(derived());
  typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
  return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}

/** \returns true if *this is approximately an unitary matrix,
  *          within the precision given by \a prec. In the case where the \a Scalar
  *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
  *
  * \note This can be used to check whether a family of vectors forms an orthonormal basis.
  *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
  *       orthonormal basis.
  *
  * Example: \include MatrixBase_isUnitary.cpp
  * Output: \verbinclude MatrixBase_isUnitary.out
  */
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
{
  typename Derived::Nested nested(derived());
  for(Index i = 0; i < cols(); ++i)
  {
    if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
      return false;
    for(Index j = 0; j < i; ++j)
      if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
        return false;
  }
  return true;
}

#endif // EIGEN_DOT_H