RoutingThread.cpp 18.5 KB
Newer Older
1 2 3 4 5
#include "RoutingThread.h"
// std
#include <chrono>
// Qt
#include <QDebug>
6
// or-tools
7
#include "QGCLoggingCategory.h"
8 9 10 11 12
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

13 14
QGC_LOGGING_CATEGORY(RoutingThreadLog, "RoutingThreadLog")

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
using namespace geometry;
using namespace operations_research;

// Aux struct and functions.
struct InternalParameters {
  InternalParameters()
      : numSolutionsPerRun(1), numRuns(1), minNumTransectsPerRun(5),
        stop([] { return false; }) {}
  std::size_t numSolutionsPerRun;
  std::size_t numRuns;
  std::size_t minNumTransectsPerRun;
  std::function<bool(void)> stop;
  mutable std::string errorString;
};

bool getRoute(const FPolygon &area, const LineStringArray &transects,
              std::vector<Solution> &solutionVector,
              const InternalParameters &par = InternalParameters());

// class RoutingThread
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
RoutingThread::RoutingThread(QObject *parent)
    : QThread(parent), _calculating(false), _stop(false), _restart(false) {

  static std::once_flag flag;
  std::call_once(flag,
                 [] { qRegisterMetaType<PtrRoutingData>("PtrRoutingData"); });
}

RoutingThread::~RoutingThread() {
  this->_stop = true;
  Lock lk(this->_mutex);
  this->_restart = true;
  this->_cv.notify_one();
  lk.unlock();
  this->wait();
}

bool RoutingThread::calculating() const { return this->_calculating; }

54
void RoutingThread::route(const RoutingParameter &par, const Work &work) {
55 56 57
  // Sample input.
  Lock lk(this->_mutex);
  this->_par = par;
58
  this->_work = work;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  lk.unlock();

  if (!this->isRunning()) {
    this->start();
  } else {
    Lock lk(this->_mutex);
    this->_restart = true;
    this->_cv.notify_one();
  }
}

void RoutingThread::run() {
  qCDebug(RoutingThreadLog) << "run(): thread start.";
  while (!this->_stop) {
    qCDebug(RoutingThreadLog) << "run(): calculation "
                                 "started.";
    // Copy input.
    auto start = std::chrono::high_resolution_clock::now();

    this->_calculating = true;
    emit calculatingChanged();
    Lock lk(this->_mutex);
    auto par = this->_par;
82
    auto work = this->_work;
83 84 85 86 87
    lk.unlock();
    auto safeAreaENU = par.safeArea;
    auto numRuns = par.numRuns;
    auto numSolutionsPerRun = par.numSolutions;

88
    PtrRoutingData pRouteData(new RoutingResult());
89 90
    auto &transectsENU = pRouteData->transects;
    // Generate transects.
91
    if (work(transectsENU)) {
92 93 94 95 96 97 98 99
      // Check if generation was successful.
      if (transectsENU.size() == 0) {
        qCDebug(RoutingThreadLog) << "run(): "
                                     "not able to generate transects.";
      } else {
        // Prepare data for routing.
        auto &solutionVector = pRouteData->solutionVector;

100 101 102
        InternalParameters routePar;
        routePar.numSolutionsPerRun = numSolutionsPerRun;
        routePar.numRuns = numRuns;
103 104 105 106 107 108

        // Set time limit to 10 min.
        const auto maxRoutingTime = std::chrono::minutes(10);
        const auto routingEnd =
            std::chrono::high_resolution_clock::now() + maxRoutingTime;
        const auto &restart = this->_restart;
109
        routePar.stop = [&restart, routingEnd] {
110 111 112 113 114 115
          bool expired = std::chrono::high_resolution_clock::now() > routingEnd;
          return restart || expired;
        };

        // Route transects.
        bool success =
116
            getRoute(safeAreaENU, transectsENU, solutionVector, routePar);
117 118 119 120 121

        // Check if routing was successful.
        if ((!success || solutionVector.size() < 1) && !this->_restart) {
          qCDebug(RoutingThreadLog) << "run(): "
                                       "routing failed. "
122
                                    << routePar.errorString.c_str();
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        } else if (this->_restart) {
          qCDebug(RoutingThreadLog) << "run(): "
                                       "restart requested.";
        } else {
          // Notify main thread.
          emit result(pRouteData);
          qCDebug(RoutingThreadLog) << "run(): "
                                       "concurrent update success.";
        }
      }
    } // end calculation
    else {
      qCDebug(RoutingThreadLog) << "run(): generator() failed.";
    }
    qCDebug(RoutingThreadLog)
        << "run(): execution time: "
        << std::chrono::duration_cast<std::chrono::milliseconds>(
               std::chrono::high_resolution_clock::now() - start)
               .count()
        << " ms";
    // Signal calulation end and set thread to sleep.
    this->_calculating = false;
    emit calculatingChanged();
    Lock lk2(this->_mutex);
    if (!this->_restart) {
      this->_cv.wait(lk2, [this] { return this->_restart.load(); });
    }
    this->_restart = false;
  } // main loop
  qCDebug(RoutingThreadLog) << "run(): thread end.";
}
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

bool getRoute(const FPolygon &area, const LineStringArray &transects,
              std::vector<Solution> &solutionVector,
              const InternalParameters &par) {

#ifdef SNAKE_SHOW_TIME
  auto start = std::chrono::high_resolution_clock::now();
#endif
  //================================================================
  // Create routing model.
  //================================================================
  // Use integer polygons to increase numerical robustness.
  // Convert area;
  IPolygon intArea;
  for (const auto &v : area.outer()) {
    auto p = float2Int(v);
    intArea.outer().push_back(p);
  }
  for (const auto &ring : area.inners()) {
    IRing intRing;
    for (const auto &v : ring) {
      auto p = float2Int(v);
      intRing.push_back(p);
    }
    intArea.inners().push_back(std::move(intRing));
  }

  // Helper classes.
  struct VirtualNode {
    VirtualNode(std::size_t f, std::size_t t) : fromIndex(f), toIndex(t) {}
    std::size_t fromIndex; // index for leaving node
    std::size_t toIndex;   // index for entering node
  };
  struct NodeToTransect {
    NodeToTransect(std::size_t i, bool r) : transectsIndex(i), reversed(r) {}
    std::size_t transectsIndex; // transects index
    bool reversed;              // transect reversed?
  };
  // Create vertex and node list
  std::vector<IPoint> vertices;
  std::vector<std::pair<std::size_t, std::size_t>> disjointNodes;
  std::vector<VirtualNode> nodeList;
  std::vector<NodeToTransect> nodeToTransectList;
  for (std::size_t i = 0; i < transects.size(); ++i) {
    const auto &t = transects[i];
    // Copy line edges only.
    if (t.size() == 1 || i == 0) {
      auto p = float2Int(t.back());
      vertices.push_back(p);
      nodeToTransectList.emplace_back(i, false);
      auto idx = vertices.size() - 1;
      nodeList.emplace_back(idx, idx);
    } else if (t.size() > 1) {
      auto p1 = float2Int(t.front());
      auto p2 = float2Int(t.back());
      vertices.push_back(p1);
      vertices.push_back(p2);
      nodeToTransectList.emplace_back(i, false);
      nodeToTransectList.emplace_back(i, true);
      auto fromIdx = vertices.size() - 1;
      auto toIdx = fromIdx - 1;
      nodeList.emplace_back(fromIdx, toIdx);
      nodeList.emplace_back(toIdx, fromIdx);
      disjointNodes.emplace_back(toIdx, fromIdx);
    } else { // transect empty
      std::cout << "ignoring empty transect with index " << i << std::endl;
    }
  }
#ifdef SNAKE_DEBUG
  // Print.
  std::cout << "nodeToTransectList:" << std::endl;
  std::cout << "node:transectIndex:reversed" << std::endl;
  std::size_t c = 0;
  for (const auto &n2t : nodeToTransectList) {
    std::cout << c++ << ":" << n2t.transectsIndex << ":" << n2t.reversed
              << std::endl;
  }
  std::cout << "nodeList:" << std::endl;
  std::cout << "node:fromIndex:toIndex" << std::endl;
  c = 0;
  for (const auto &n : nodeList) {
    std::cout << c++ << ":" << n.fromIndex << ":" << n.toIndex << std::endl;
  }
  std::cout << "disjoint nodes:" << std::endl;
  std::cout << "number:nodes" << std::endl;
  c = 0;
  for (const auto &d : disjointNodes) {
    std::cout << c++ << ":" << d.first << "," << d.second << std::endl;
  }
#endif

  // Add polygon vertices.
  for (auto &v : intArea.outer()) {
    vertices.push_back(v);
  }
  for (auto &ring : intArea.inners()) {
    for (auto &v : ring) {
      vertices.push_back(v);
    }
  }

  // Create connection graph (inf == no connection between vertices).
  // Note: graph is not symmetric.
  auto n = vertices.size();
  // Matrix must be double since integers don't have infinity and nan
  Matrix<double> connectionGraph(n, n);
  for (std::size_t i = 0; i < n; ++i) {
    auto &fromVertex = vertices[i];
    for (std::size_t j = 0; j < n; ++j) {
      auto &toVertex = vertices[j];
      ILineString line{fromVertex, toVertex};
      if (bg::covered_by(line, intArea)) {
        connectionGraph(i, j) = bg::length(line);
      } else {
        connectionGraph(i, j) = std::numeric_limits<double>::infinity();
      }
    }
  }
#ifdef SNAKE_DEBUG
  std::cout << "connection grah:" << std::endl;
  std::cout << connectionGraph << std::endl;
#endif

  // Create distance matrix.
  auto distLambda = [&connectionGraph](std::size_t i, std::size_t j) -> double {
    return connectionGraph(i, j);
  };
  auto nNodes = nodeList.size();
  Matrix<IntType> distanceMatrix(nNodes, nNodes);
  for (std::size_t i = 0; i < nNodes; ++i) {
    distanceMatrix(i, i) = 0;
    for (std::size_t j = i + 1; j < nNodes; ++j) {
      auto dist = connectionGraph(i, j);
      if (std::isinf(dist)) {
        std::vector<std::size_t> route;
        if (!dijkstraAlgorithm(n, i, j, route, dist, distLambda)) {
          std::stringstream ss;
          ss << "Distance matrix calculation failed. connection graph: "
             << connectionGraph << std::endl;
          ss << "area: " << bg::wkt(area) << std::endl;
          ss << "transects:" << std::endl;
          for (const auto &t : transects) {

            ss << bg::wkt(t) << std::endl;
          }

          par.errorString = ss.str();
          return false;
        }
        (void)route;
      }
      distanceMatrix(i, j) = dist;
      distanceMatrix(j, i) = dist;
    }
  }
#ifdef SNAKE_DEBUG
  std::cout << "distance matrix:" << std::endl;
  std::cout << distanceMatrix << std::endl;
#endif

  // Create (asymmetric) routing matrix.
  Matrix<IntType> routingMatrix(nNodes, nNodes);
  for (std::size_t i = 0; i < nNodes; ++i) {
    auto fromNode = nodeList[i];
    for (std::size_t j = 0; j < nNodes; ++j) {
      auto toNode = nodeList[j];
      routingMatrix(i, j) = distanceMatrix(fromNode.fromIndex, toNode.toIndex);
    }
  }
  // Insert max for disjoint nodes.
  for (const auto &d : disjointNodes) {
    auto i = d.first;
    auto j = d.second;
    routingMatrix(i, j) = std::numeric_limits<IntType>::max();
    routingMatrix(j, i) = std::numeric_limits<IntType>::max();
  }
#ifdef SNAKE_DEBUG
  std::cout << "routing matrix:" << std::endl;
  std::cout << routingMatrix << std::endl;
#endif

  // Create Routing Index Manager.
  auto minNumTransectsPerRun =
      std::max<std::size_t>(1, par.minNumTransectsPerRun);
  auto maxRuns = std::max<std::size_t>(
      1, std::floor(double(transects.size()) / minNumTransectsPerRun));
  auto numRuns = std::max<std::size_t>(1, par.numRuns);
  numRuns = std::min<std::size_t>(numRuns, maxRuns);

  RoutingIndexManager::NodeIndex depot(0);
  //  std::vector<RoutingIndexManager::NodeIndex> depots(numRuns, depot);
  //  RoutingIndexManager manager(nNodes, numRuns, depots, depots);
  RoutingIndexManager manager(nNodes, numRuns, depot);

  // Create Routing Model.
  RoutingModel routing(manager);
  // Create and register a transit callback.
  const int transitCallbackIndex = routing.RegisterTransitCallback(
      [&routingMatrix, &manager](int64 from_index, int64 to_index) -> int64 {
        // Convert from routing variable Index to distance matrix NodeIndex.
        auto from_node = manager.IndexToNode(from_index).value();
        auto to_node = manager.IndexToNode(to_index).value();
        return routingMatrix(from_node, to_node);
      });
  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
  // Add distance dimension.
  if (numRuns > 1) {
    routing.AddDimension(transitCallbackIndex, 0, 300000000,
                         true, // start cumul to zero
                         "Distance");
    routing.GetMutableDimension("Distance")
        ->SetGlobalSpanCostCoefficient(100000000);
  }

  // Define disjunctions.
#ifdef SNAKE_DEBUG
  std::cout << "disjunctions:" << std::endl;
#endif
  for (const auto &d : disjointNodes) {
    auto i = d.first;
    auto j = d.second;
#ifdef SNAKE_DEBUG
    std::cout << i << "," << j << std::endl;
#endif
    auto idx0 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    auto idx1 = manager.NodeToIndex(RoutingIndexManager::NodeIndex(j));
    std::vector<int64> disj{idx0, idx1};
    routing.AddDisjunction(disj, -1 /*force cardinality*/, 1 /*cardinality*/);
  }

  // Set first solution heuristic.
  auto searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  // Number of solutions.
  auto numSolutionsPerRun = std::max<std::size_t>(1, par.numSolutionsPerRun);
  searchParameters.set_number_of_solutions_to_collect(numSolutionsPerRun);
  // Set costume limit.
  auto *solver = routing.solver();
  auto *limit = solver->MakeCustomLimit(par.stop);
  routing.AddSearchMonitor(limit);
#ifdef SNAKE_SHOW_TIME
  auto delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "create routing model: " << delta.count() << " ms" << endl;
#endif

  //================================================================
  // Solve model.
  //================================================================
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();
#endif
  auto pSolutions = std::make_unique<std::vector<const Assignment *>>();
  (void)routing.SolveWithParameters(searchParameters, pSolutions.get());
#ifdef SNAKE_SHOW_TIME
  delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "solve routing model: " << delta.count() << " ms" << endl;
#endif
  if (par.stop()) {
    par.errorString = "User terminated.";
    return false;
  }
  if (pSolutions->size() == 0) {
    std::stringstream ss;
    ss << "No solution found." << std::endl;
    par.errorString = ss.str();
    return false;
  }

  //================================================================
  // Construc route.
  //================================================================
#ifdef SNAKE_SHOW_TIME
  start = std::chrono::high_resolution_clock::now();
#endif
  long long counter = -1;
  // Note: route number 0 corresponds to the best route which is the last entry
  // of *pSolutions.
  for (auto solution = pSolutions->end() - 1; solution >= pSolutions->begin();
       --solution) {
    ++counter;
    if (!*solution || (*solution)->Size() <= 1) {
      std::stringstream ss;
      ss << par.errorString << "Solution " << counter << "invalid."
         << std::endl;
      par.errorString = ss.str();
      continue;
    }
    // Iterate over all routes.
    Solution routeVector;
    for (std::size_t vehicle = 0; vehicle < numRuns; ++vehicle) {
      if (!routing.IsVehicleUsed(**solution, vehicle))
        continue;

      // Create index list.
      auto index = routing.Start(vehicle);
      std::vector<size_t> route_idx;
      route_idx.push_back(manager.IndexToNode(index).value());
      while (!routing.IsEnd(index)) {
        index = (*solution)->Value(routing.NextVar(index));
        route_idx.push_back(manager.IndexToNode(index).value());
      }

#ifdef SNAKE_DEBUG
      // Print route.
      std::cout << "route " << counter
                << " route_idx.size() = " << route_idx.size() << std::endl;
      std::cout << "route: ";
      for (const auto &idx : route_idx) {
        std::cout << idx << ", ";
      }
      std::cout << std::endl;
#endif
      if (route_idx.size() < 2) {
        std::stringstream ss;
        ss << par.errorString
           << "Error while assembling route (solution = " << counter
           << ", run = " << vehicle << ")." << std::endl;
        par.errorString = ss.str();
        continue;
      }

      // Assemble route.
      Route r;
      auto &path = r.path;
      auto &info = r.info;
      for (size_t i = 0; i < route_idx.size() - 1; ++i) {
        size_t nodeIndex0 = route_idx[i];
        size_t nodeIndex1 = route_idx[i + 1];
        const auto &n2t0 = nodeToTransectList[nodeIndex0];
        info.emplace_back(n2t0.transectsIndex, n2t0.reversed);
        // Copy transect to route.
        const auto &t = transects[n2t0.transectsIndex];
        if (n2t0.reversed) { // transect reversal needed?
          for (auto it = t.end() - 1; it > t.begin(); --it) {
            path.push_back(*it);
          }
        } else {
          for (auto it = t.begin(); it < t.end() - 1; ++it) {
            path.push_back(*it);
          }
        }
        // Connect transects.
        std::vector<size_t> idxList;
        if (!shortestPathFromGraph(connectionGraph,
                                   nodeList[nodeIndex0].fromIndex,
                                   nodeList[nodeIndex1].toIndex, idxList)) {
          std::stringstream ss;
          ss << par.errorString
             << "Error while assembling route (solution = " << counter
             << ", run = " << vehicle << ")." << std::endl;
          par.errorString = ss.str();
          continue;
        }
        if (i != route_idx.size() - 2) {
          idxList.pop_back();
        }
        for (auto idx : idxList) {
          auto p = int2Float(vertices[idx]);
          path.push_back(p);
        }
      }
      // Append last transect info.
      const auto &n2t0 = nodeToTransectList.back();
      info.emplace_back(n2t0.transectsIndex, n2t0.reversed);

      if (path.size() < 2 || info.size() < 2) {
        std::stringstream ss;
        ss << par.errorString << "Route empty (solution = " << counter
           << ", run = " << vehicle << ")." << std::endl;
        par.errorString = ss.str();
        continue;
      }

      routeVector.push_back(std::move(r));
    }
    if (routeVector.size() > 0) {
      solutionVector.push_back(std::move(routeVector));
    } else {
      std::stringstream ss;
      ss << par.errorString << "Solution " << counter << " empty." << std::endl;
      par.errorString = ss.str();
    }
  }
#ifdef SNAKE_SHOW_TIME
  delta = std::chrono::duration_cast<std::chrono::milliseconds>(
      std::chrono::high_resolution_clock::now() - start);
  cout << "reconstruct route: " << delta.count() << " ms" << endl;
#endif

  if (solutionVector.size() > 0) {
    return true;
  } else {
    return false;
  }
}