kenken2.cs 6.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.ConstraintSolver;


public class KenKen2
{

  /**
   * Ensure that the sum of the segments
   * in cc == res
   *
   */
  public static void calc(Solver solver,
                           int[] cc,
                           IntVar[,] x,
                           int res)
  {

    int ccLen = cc.Length;
    if (ccLen == 4) {

      // for two operands there's
      // a lot of possible variants
      IntVar a = x[cc[0]-1, cc[1]-1];
      IntVar b = x[cc[2]-1, cc[3]-1];

      IntVar r1 = a + b == res;
      IntVar r2 = a * b == res;
      IntVar r3 = a * res == b;
      IntVar r4 = b * res == a;
      IntVar r5 = a - b == res;
      IntVar r6 = b - a == res;

      solver.Add(r1+r2+r3+r4+r5+r6 >= 1);

    } else {

      // For length > 2 then res is either the sum
      // the the product of the segment

      // sum the numbers
      int len = cc.Length / 2;
      IntVar[] xx = (from i in Enumerable.Range(0, len)
                     select x[cc[i*2]-1,cc[i*2+1]-1]).ToArray();

      // Sum
      IntVar this_sum = xx.Sum() == res;

      // Product
      // IntVar this_prod = (xx.Prod() == res).Var(); // don't work
      IntVar this_prod;
      if (xx.Length == 3) {
        this_prod = (x[cc[0]-1,cc[1]-1] *
                     x[cc[2]-1,cc[3]-1] *
                     x[cc[4]-1,cc[5]-1]) == res;
      } else {
        this_prod = (x[cc[0]-1,cc[1]-1] *
                     x[cc[2]-1,cc[3]-1] *
                     x[cc[4]-1,cc[5]-1] *
                     x[cc[6]-1,cc[7]-1]) == res;

      }

      solver.Add(this_sum + this_prod >= 1);


    }
  }



  /**
   *
   * KenKen puzzle.
   *
   * http://en.wikipedia.org/wiki/KenKen
   * """
   * KenKen or KEN-KEN is a style of arithmetic and logical puzzle sharing
   * several characteristics with sudoku. The name comes from Japanese and
   * is translated as 'square wisdom' or 'cleverness squared'.
   * ...
   * The objective is to fill the grid in with the digits 1 through 6 such that:
   *
   * * Each row contains exactly one of each digit
   * * Each column contains exactly one of each digit
   * * Each bold-outlined group of cells is a cage containing digits which
   *   achieve the specified result using the specified mathematical operation:
   *     addition (+),
   *     subtraction (-),
   *     multiplication (x),
   *     and division (/).
   *    (Unlike in Killer sudoku, digits may repeat within a group.)
   *
   * ...
   * More complex KenKen problems are formed using the principles described
   * above but omitting the symbols +, -, x and /, thus leaving them as
   * yet another unknown to be determined.
   * """
   *
   * The solution is:
   *
   *    5 6 3 4 1 2
   *    6 1 4 5 2 3
   *    4 5 2 3 6 1
   *    3 4 1 2 5 6
   *    2 3 6 1 4 5
   *    1 2 5 6 3 4
   *
   *
   * Also see http://www.hakank.org/or-tools/kenken2.py
   * though this C# model has another representation of
   * the problem instance.
   *
   */
  private static void Solve()
  {

    Solver solver = new Solver("KenKen2");

    // size of matrix
    int n = 6;
    IEnumerable<int> RANGE = Enumerable.Range(0, n);

    // For a better view of the problem, see
    //  http://en.wikipedia.org/wiki/File:KenKenProblem.svg

    // hints
    //  sum, the hints
    // Note: this is 1-based
    int[][] problem =
      {
        new int[] { 11,  1,1, 2,1},
        new int[] {  2,  1,2, 1,3},
        new int[] { 20,  1,4, 2,4},
        new int[] {  6,  1,5, 1,6, 2,6, 3,6},
        new int[] {  3,  2,2, 2,3},
        new int[] {  3,  2,5, 3,5},
        new int[] {240,  3,1, 3,2, 4,1, 4,2},
        new int[] {  6,  3,3, 3,4},
        new int[] {  6,  4,3, 5,3},
        new int[] {  7,  4,4, 5,4, 5,5},
        new int[] { 30,  4,5, 4,6},
        new int[] {  6,  5,1, 5,2},
        new int[] {  9,  5,6, 6,6},
        new int[] {  8,  6,1, 6,2, 6,3},
        new int[] {  2,  6,4, 6,5}
      };


    int num_p = problem.GetLength(0); // Number of segments

    //
    // Decision variables
    //
    IntVar[,] x =  solver.MakeIntVarMatrix(n, n, 1, n, "x");
    IntVar[] x_flat = x.Flatten();

    //
    // Constraints
    //

    //
    //  alldifferent rows and columns
    foreach(int i in RANGE) {
      // rows
      solver.Add( (from j in RANGE select x[i,j]).ToArray().AllDifferent());

      // cols
      solver.Add( (from j in RANGE select x[j,i]).ToArray().AllDifferent());

    }


    // Calculate the segments
    for(int i = 0; i < num_p; i++) {

      int[] segment = problem[i];

      // Remove the sum from the segment
      int len = segment.Length-1;
      int[] s2 = new int[len];
      Array.Copy(segment, 1, s2, 0, len);

      // sum this segment
      calc(solver, s2, x, segment[0]);

    }

    //
    // Search
    //
    DecisionBuilder db = solver.MakePhase(x_flat,
                                          Solver.INT_VAR_DEFAULT,
                                          Solver.INT_VALUE_DEFAULT);

    solver.NewSearch(db);

    while (solver.NextSolution()) {
      for(int i = 0; i < n; i++) {
        for(int j = 0; j < n; j++) {
          Console.Write(x[i,j].Value() + " ");
        }
        Console.WriteLine();
      }
      Console.WriteLine();
    }

    Console.WriteLine("\nSolutions: {0}", solver.Solutions());
    Console.WriteLine("WallTime: {0}ms", solver.WallTime());
    Console.WriteLine("Failures: {0}", solver.Failures());
    Console.WriteLine("Branches: {0} ", solver.Branches());

    solver.EndSearch();

  }


  public static void Main(String[] args)
  {

    Solve();
  }
}