omap.cc 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
// Copyright 2013 Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This contains a suite of tools for transforming symbol information when
// when that information has been extracted from a PDB containing OMAP
// information.

// OMAP information is a lightweight description of a mapping between two
// address spaces. It consists of two streams, each of them a vector 2-tuples.
// The OMAPTO stream contains tuples of the form
//
//   (RVA in transformed image, RVA in original image)
//
// while the OMAPFROM stream contains tuples of the form
//
//   (RVA in original image, RVA in transformed image)
//
// The entries in each vector are sorted by the first value of the tuple, and
// the lengths associated with a mapping are implicit as the distance between
// two successive addresses in the vector.

// Consider a trivial 10-byte function described by the following symbol:
//
//   Function: RVA 0x00001000, length 10, "foo"
//
// Now consider the same function, but with 5-bytes of instrumentation injected
// at offset 5. The OMAP streams describing this would look like:
//
//   OMAPTO  :  [ [0x00001000, 0x00001000],
//                [0x00001005, 0xFFFFFFFF],
//                [0x0000100a, 0x00001005] ]
//   OMAPFROM:  [ [0x00001000, 0x00001000],
//                [0x00001005, 0x0000100a] ]
//
// In this case the injected code has been marked as not originating in the
// source image, and thus it will have no symbol information at all. However,
// the injected code may also be associated with an original address range;
// for example, when prepending instrumentation to a basic block the
// instrumentation can be labelled as originating from the same source BB such
// that symbol resolution will still find the appropriate source code line
// number. In this case the OMAP stream would look like:
//
//   OMAPTO  :  [ [0x00001000, 0x00001000],
//                [0x00001005, 0x00001005],
//                [0x0000100a, 0x00001005] ]
//   OMAPFROM:  [ [0x00001000, 0x00001000],
//                [0x00001005, 0x0000100a] ]
//
// Suppose we asked DIA to lookup the symbol at location 0x0000100a of the
// instrumented image. It would first run this through the OMAPTO table and
// translate that address to 0x00001005. It would then lookup the symbol
// at that address and return the symbol for the function "foo". This is the
// correct result.
//
// However, if we query DIA for the length and address of the symbol it will
// tell us that it has length 10 and is at RVA 0x00001000. The location is
// correct, but the length doesn't take into account the 5-bytes of injected
// code. Symbol resolution works (starting from an instrumented address,
// mapping to an original address, and looking up a symbol), but the symbol
// metadata is incorrect.
//
// If we dump the symbols using DIA they will have their addresses
// appropriately transformed and reflect positions in the instrumented image.
// However, if we try to do a lookup using those symbols resolution can fail.
// For example, the address 0x0000100a will not map to the symbol for "foo",
// because DIA tells us it is at location 0x00001000 (correct) with length
// 10 (incorrect). The problem is one of order of operations: in this case
// we're attempting symbol resolution by looking up an instrumented address
// in the table of translated symbols.
//
// One way to handle this is to dump the OMAP information as part of the
// breakpad symbols. This requires the rest of the toolchain to be aware of
// OMAP information and to use it when present prior to performing lookup. The
// other option is to properly transform the symbols (updating length as well as
// position) so that resolution will work as expected for translated addresses.
// This is transparent to the rest of the toolchain.

#include "common/windows/omap.h"

#include <atlbase.h>

#include <algorithm>
#include <cassert>
#include <set>

#include "common/windows/dia_util.h"

namespace google_breakpad {

namespace {

static const wchar_t kOmapToDebugStreamName[] = L"OMAPTO";
static const wchar_t kOmapFromDebugStreamName[] = L"OMAPFROM";

// Dependending on where this is used in breakpad we sometimes get min/max from
// windef, and other times from algorithm. To get around this we simply
// define our own min/max functions.
template<typename T>
const T& Min(const T& t1, const T& t2) { return t1 < t2 ? t1 : t2; }
template<typename T>
const T& Max(const T& t1, const T& t2) { return t1 > t2 ? t1 : t2; }

// It makes things more readable to have two different OMAP types. We cast
// normal OMAPs into these. They must be the same size as the OMAP structure
// for this to work, hence the static asserts.
struct OmapOrigToTran {
  DWORD rva_original;
  DWORD rva_transformed;
};
struct OmapTranToOrig {
  DWORD rva_transformed;
  DWORD rva_original;
};
static_assert(sizeof(OmapOrigToTran) == sizeof(OMAP),
              "OmapOrigToTran must have same size as OMAP.");
static_assert(sizeof(OmapTranToOrig) == sizeof(OMAP),
              "OmapTranToOrig must have same size as OMAP.");
typedef std::vector<OmapOrigToTran> OmapFromTable;
typedef std::vector<OmapTranToOrig> OmapToTable;

// Used for sorting and searching through a Mapping.
bool MappedRangeOriginalLess(const MappedRange& lhs, const MappedRange& rhs) {
  if (lhs.rva_original < rhs.rva_original)
    return true;
  if (lhs.rva_original > rhs.rva_original)
    return false;
  return lhs.length < rhs.length;
}
bool MappedRangeMappedLess(const MappedRange& lhs, const MappedRange& rhs) {
  if (lhs.rva_transformed < rhs.rva_transformed)
    return true;
  if (lhs.rva_transformed > rhs.rva_transformed)
    return false;
  return lhs.length < rhs.length;
}

// Used for searching through the EndpointIndexMap.
bool EndpointIndexLess(const EndpointIndex& ei1, const EndpointIndex& ei2) {
  return ei1.endpoint < ei2.endpoint;
}

// Finds the debug stream with the given |name| in the given |session|, and
// populates |table| with its contents. Casts the data directly into OMAP
// structs.
bool FindAndLoadOmapTable(const wchar_t* name,
                          IDiaSession* session,
                          OmapTable* table) {
  assert(name != NULL);
  assert(session != NULL);
  assert(table != NULL);

  CComPtr<IDiaEnumDebugStreamData> stream;
  if (!FindDebugStream(name, session, &stream))
    return false;
  assert(stream.p != NULL);

  LONG count = 0;
  if (FAILED(stream->get_Count(&count))) {
    fprintf(stderr, "IDiaEnumDebugStreamData::get_Count failed for stream "
                    "\"%ws\"\n", name);
    return false;
  }

  // Get the length of the stream in bytes.
  DWORD bytes_read = 0;
  ULONG count_read = 0;
  if (FAILED(stream->Next(count, 0, &bytes_read, NULL, &count_read))) {
    fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading "
                    "length of stream \"%ws\"\n", name);
    return false;
  }

  // Ensure it's consistent with the OMAP data type.
  DWORD bytes_expected = count * sizeof(OmapTable::value_type);
  if (count * sizeof(OmapTable::value_type) != bytes_read) {
    fprintf(stderr, "DIA debug stream \"%ws\" has an unexpected length", name);
    return false;
  }

  // Read the table.
  table->resize(count);
  bytes_read = 0;
  count_read = 0;
  if (FAILED(stream->Next(count, bytes_expected, &bytes_read,
                          reinterpret_cast<BYTE*>(&table->at(0)),
                          &count_read))) {
    fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading "
                    "data from stream \"%ws\"\n", name);
    return false;
  }

  return true;
}

// This determines the original image length by looking through the segment
// table.
bool GetOriginalImageLength(IDiaSession* session, DWORD* image_length) {
  assert(session != NULL);
  assert(image_length != NULL);

  CComPtr<IDiaEnumSegments> enum_segments;
  if (!FindTable(session, &enum_segments))
    return false;
  assert(enum_segments.p != NULL);

  DWORD temp_image_length = 0;
  CComPtr<IDiaSegment> segment;
  ULONG fetched = 0;
  while (SUCCEEDED(enum_segments->Next(1, &segment, &fetched)) &&
         fetched == 1) {
    assert(segment.p != NULL);

    DWORD rva = 0;
    DWORD length = 0;
    DWORD frame = 0;
    if (FAILED(segment->get_relativeVirtualAddress(&rva)) ||
        FAILED(segment->get_length(&length)) ||
        FAILED(segment->get_frame(&frame))) {
      fprintf(stderr, "Failed to get basic properties for IDiaSegment\n");
      return false;
    }

    if (frame > 0) {
      DWORD segment_end = rva + length;
      if (segment_end > temp_image_length)
        temp_image_length = segment_end;
    }
    segment.Release();
  }

  *image_length = temp_image_length;
  return true;
}

// Detects regions of the original image that have been removed in the
// transformed image, and sets the 'removed' property on all mapped ranges
// immediately preceding a gap. The mapped ranges must be sorted by
// 'rva_original'.
void FillInRemovedLengths(Mapping* mapping) {
  assert(mapping != NULL);

  // Find and fill gaps. We do this with two sweeps. We first sweep forward
  // looking for gaps. When we identify a gap we then sweep forward with a
  // second scan and set the 'removed' property for any intervals that
  // immediately precede the gap.
  //
  // Gaps are typically between two successive intervals, but not always:
  //
  //   Range 1: ---------------
  //   Range 2:     -------
  //   Range 3:                      -------------
  //   Gap    :                ******
  //
  // In the above example the gap is between range 1 and range 3. A forward
  // sweep finds the gap, and a second forward sweep identifies that range 1
  // immediately precedes the gap and sets its 'removed' property.

  size_t fill = 0;
  DWORD rva_front = 0;
  for (size_t find = 0; find < mapping->size(); ++find) {
#ifndef NDEBUG
    // We expect the mapped ranges to be sorted by 'rva_original'.
    if (find > 0) {
      assert(mapping->at(find - 1).rva_original <=
                 mapping->at(find).rva_original);
    }
#endif

    if (rva_front < mapping->at(find).rva_original) {
      // We've found a gap. Fill it in by setting the 'removed' property for
      // any affected intervals.
      DWORD removed = mapping->at(find).rva_original - rva_front;
      for (; fill < find; ++fill) {
        if (mapping->at(fill).rva_original + mapping->at(fill).length !=
                rva_front) {
          continue;
        }

        // This interval ends right where the gap starts. It needs to have its
        // 'removed' information filled in.
        mapping->at(fill).removed = removed;
      }
    }

    // Advance the front that indicates the covered portion of the image.
    rva_front = mapping->at(find).rva_original + mapping->at(find).length;
  }
}

// Builds a unified view of the mapping between the original and transformed
// image space by merging OMAPTO and OMAPFROM data.
void BuildMapping(const OmapData& omap_data, Mapping* mapping) {
  assert(mapping != NULL);

  mapping->clear();

  if (omap_data.omap_from.empty() || omap_data.omap_to.empty())
    return;

  // The names 'omap_to' and 'omap_from' are awfully confusing, so we make
  // ourselves more explicit here. This cast is only safe because the underlying
  // types have the exact same size.
  const OmapToTable& tran2orig =
      reinterpret_cast<const OmapToTable&>(omap_data.omap_to);
  const OmapFromTable& orig2tran = reinterpret_cast<const OmapFromTable&>(
      omap_data.omap_from);

  // Handle the range of data at the beginning of the image. This is not usually
  // specified by the OMAP data.
  if (tran2orig[0].rva_transformed > 0 && orig2tran[0].rva_original > 0) {
    DWORD header_transformed = tran2orig[0].rva_transformed;
    DWORD header_original = orig2tran[0].rva_original;
    DWORD header = Min(header_transformed, header_original);

    MappedRange mr = {};
    mr.length = header;
    mr.injected = header_transformed - header;
    mr.removed = header_original - header;
    mapping->push_back(mr);
  }

  // Convert the implied lengths to explicit lengths, and infer which content
  // has been injected into the transformed image. Injected content is inferred
  // as regions of the transformed address space that does not map back to
  // known valid content in the original image.
  for (size_t i = 0; i < tran2orig.size(); ++i) {
    const OmapTranToOrig& o1 = tran2orig[i];

    // This maps to content that is outside the original image, thus it
    // describes injected content. We can skip this entry.
    if (o1.rva_original >= omap_data.length_original)
      continue;

    // Calculate the length of the current OMAP entry. This is implicit as the
    // distance between successive |rva| values, capped at the end of the
    // original image.
    DWORD length = 0;
    if (i + 1 < tran2orig.size()) {
      const OmapTranToOrig& o2 = tran2orig[i + 1];

      // We expect the table to be sorted by rva_transformed.
      assert(o1.rva_transformed <= o2.rva_transformed);

      length = o2.rva_transformed - o1.rva_transformed;
      if (o1.rva_original + length > omap_data.length_original) {
        length = omap_data.length_original - o1.rva_original;
      }
    } else {
      length = omap_data.length_original - o1.rva_original;
    }

    // Zero-length entries don't describe anything and can be ignored.
    if (length == 0)
      continue;

    // Any gaps in the transformed address-space are due to injected content.
    if (!mapping->empty()) {
      MappedRange& prev_mr = mapping->back();
      prev_mr.injected += o1.rva_transformed -
          (prev_mr.rva_transformed + prev_mr.length);
    }

    MappedRange mr = {};
    mr.rva_original = o1.rva_original;
    mr.rva_transformed = o1.rva_transformed;
    mr.length = length;
    mapping->push_back(mr);
  }

  // Sort based on the original image addresses.
  std::sort(mapping->begin(), mapping->end(), MappedRangeOriginalLess);

  // Fill in the 'removed' lengths by looking for gaps in the coverage of the
  // original address space.
  FillInRemovedLengths(mapping);

  return;
}

void BuildEndpointIndexMap(ImageMap* image_map) {
  assert(image_map != NULL);

  if (image_map->mapping.size() == 0)
    return;

  const Mapping& mapping = image_map->mapping;
  EndpointIndexMap& eim = image_map->endpoint_index_map;

  // Get the unique set of interval endpoints.
  std::set<DWORD> endpoints;
  for (size_t i = 0; i < mapping.size(); ++i) {
    endpoints.insert(mapping[i].rva_original);
    endpoints.insert(mapping[i].rva_original +
                         mapping[i].length +
                         mapping[i].removed);
  }

  // Use the endpoints to initialize the secondary search structure for the
  // mapping.
  eim.resize(endpoints.size());
  std::set<DWORD>::const_iterator it = endpoints.begin();
  for (size_t i = 0; it != endpoints.end(); ++it, ++i) {
    eim[i].endpoint = *it;
    eim[i].index = mapping.size();
  }

  // For each endpoint we want the smallest index of any interval containing
  // it. We iterate over the intervals and update the indices associated with
  // each interval endpoint contained in the current interval. In the general
  // case of an arbitrary set of intervals this is O(n^2), but the structure of
  // OMAP data makes this O(n).
  for (size_t i = 0; i < mapping.size(); ++i) {
    EndpointIndex ei1 = { mapping[i].rva_original, 0 };
    EndpointIndexMap::iterator it1 = std::lower_bound(
        eim.begin(), eim.end(), ei1, EndpointIndexLess);

    EndpointIndex ei2 = { mapping[i].rva_original + mapping[i].length +
                              mapping[i].removed, 0 };
    EndpointIndexMap::iterator it2 = std::lower_bound(
        eim.begin(), eim.end(), ei2, EndpointIndexLess);

    for (; it1 != it2; ++it1)
      it1->index = Min(i, it1->index);
  }
}

void BuildSubsequentRVAMap(const OmapData &omap_data,
                           std::map<DWORD, DWORD> *subsequent) {
  assert(subsequent->empty());
  const OmapFromTable &orig2tran =
      reinterpret_cast<const OmapFromTable &>(omap_data.omap_from);

  if (orig2tran.empty())
    return;

  for (size_t i = 0; i < orig2tran.size() - 1; ++i) {
    // Expect that orig2tran is sorted.
    if (orig2tran[i].rva_original >= orig2tran[i + 1].rva_original) {
      fprintf(stderr, "OMAP 'from' table unexpectedly unsorted\n");
      subsequent->clear();
      return;
    }
    subsequent->insert(std::make_pair(orig2tran[i].rva_original,
                                      orig2tran[i + 1].rva_original));
  }
}

// Clips the given mapped range.
void ClipMappedRangeOriginal(const AddressRange& clip_range,
                             MappedRange* mapped_range) {
  assert(mapped_range != NULL);

  // The clipping range is entirely outside of the mapped range.
  if (clip_range.end() <= mapped_range->rva_original ||
      mapped_range->rva_original + mapped_range->length +
          mapped_range->removed <= clip_range.rva) {
    mapped_range->length = 0;
    mapped_range->injected = 0;
    mapped_range->removed = 0;
    return;
  }

  // Clip the left side.
  if (mapped_range->rva_original < clip_range.rva) {
    DWORD clip_left = clip_range.rva - mapped_range->rva_original;
    mapped_range->rva_original += clip_left;
    mapped_range->rva_transformed += clip_left;

    if (clip_left > mapped_range->length) {
      // The left clipping boundary entirely erases the content section of the
      // range.
      DWORD trim = clip_left - mapped_range->length;
      mapped_range->length = 0;
      mapped_range->injected -= Min(trim, mapped_range->injected);
      // We know that trim <= mapped_range->remove.
      mapped_range->removed -= trim;
    } else {
      // The left clipping boundary removes some, but not all, of the content.
      // As such it leaves the removed/injected component intact.
      mapped_range->length -= clip_left;
    }
  }

  // Clip the right side.
  DWORD end_original = mapped_range->rva_original + mapped_range->length;
  if (clip_range.end() < end_original) {
    // The right clipping boundary lands in the 'content' section of the range,
    // entirely clearing the injected/removed portion.
    DWORD clip_right = end_original - clip_range.end();
    mapped_range->length -= clip_right;
    mapped_range->injected = 0;
    mapped_range->removed = 0;
    return;
  } else {
    // The right clipping boundary is outside of the content, but may affect
    // the removed/injected portion of the range.
    DWORD end_removed = end_original + mapped_range->removed;
    if (clip_range.end() < end_removed)
      mapped_range->removed = clip_range.end() - end_original;

    DWORD end_injected = end_original + mapped_range->injected;
    if (clip_range.end() < end_injected)
      mapped_range->injected = clip_range.end() - end_original;
  }

  return;
}

}  // namespace

int AddressRange::Compare(const AddressRange& rhs) const {
  if (end() <= rhs.rva)
    return -1;
  if (rhs.end() <= rva)
    return 1;
  return 0;
}

bool GetOmapDataAndDisableTranslation(IDiaSession* session,
                                      OmapData* omap_data) {
  assert(session != NULL);
  assert(omap_data != NULL);

  CComPtr<IDiaAddressMap> address_map;
  if (FAILED(session->QueryInterface(&address_map))) {
    fprintf(stderr, "IDiaSession::QueryInterface(IDiaAddressMap) failed\n");
    return false;
  }
  assert(address_map.p != NULL);

  BOOL omap_enabled = FALSE;
  if (FAILED(address_map->get_addressMapEnabled(&omap_enabled))) {
    fprintf(stderr, "IDiaAddressMap::get_addressMapEnabled failed\n");
    return false;
  }

  if (!omap_enabled) {
    // We indicate the non-presence of OMAP data by returning empty tables.
    omap_data->omap_from.clear();
    omap_data->omap_to.clear();
    omap_data->length_original = 0;
    return true;
  }

  // OMAP data is present. Disable translation.
  if (FAILED(address_map->put_addressMapEnabled(FALSE))) {
    fprintf(stderr, "IDiaAddressMap::put_addressMapEnabled failed\n");
    return false;
  }

  // Read the OMAP streams.
  if (!FindAndLoadOmapTable(kOmapFromDebugStreamName,
                            session,
                            &omap_data->omap_from)) {
    return false;
  }
  if (!FindAndLoadOmapTable(kOmapToDebugStreamName,
                            session,
                            &omap_data->omap_to)) {
    return false;
  }

  // Get the lengths of the address spaces.
  if (!GetOriginalImageLength(session, &omap_data->length_original))
    return false;

  return true;
}

void BuildImageMap(const OmapData& omap_data, ImageMap* image_map) {
  assert(image_map != NULL);

  BuildMapping(omap_data, &image_map->mapping);
  BuildEndpointIndexMap(image_map);
  BuildSubsequentRVAMap(omap_data, &image_map->subsequent_rva_block);
}

void MapAddressRange(const ImageMap& image_map,
                     const AddressRange& original_range,
                     AddressRangeVector* mapped_ranges) {
  assert(mapped_ranges != NULL);

  const Mapping& map = image_map.mapping;

  // Handle the trivial case of an empty image_map. This means that there is
  // no transformation to be applied, and we can simply return the original
  // range.
  if (map.empty()) {
    mapped_ranges->push_back(original_range);
    return;
  }

  // If we get a query of length 0 we need to handle it by using a non-zero
  // query length.
  AddressRange query_range(original_range);
  if (query_range.length == 0)
    query_range.length = 1;

  // Find the range of intervals that can potentially intersect our query range.
  size_t imin = 0;
  size_t imax = 0;
  {
    // The index of the earliest possible range that can affect is us done by
    // searching through the secondary indexing structure.
    const EndpointIndexMap& eim = image_map.endpoint_index_map;
    EndpointIndex q1 = { query_range.rva, 0 };
    EndpointIndexMap::const_iterator it1 = std::lower_bound(
        eim.begin(), eim.end(), q1, EndpointIndexLess);
    if (it1 == eim.end()) {
      imin  = map.size();
    } else {
      // Backup to find the interval that contains our query point.
      if (it1 != eim.begin() && query_range.rva < it1->endpoint)
        --it1;
      imin = it1->index;
    }

    // The first range that can't possibly intersect us is found by searching
    // through the image map directly as it is already sorted by interval start
    // point.
    MappedRange q2 = { query_range.end(), 0 };
    Mapping::const_iterator it2 = std::lower_bound(
        map.begin(), map.end(), q2, MappedRangeOriginalLess);
    imax = it2 - map.begin();
  }

  // Find all intervals that intersect the query range.
  Mapping temp_map;
  for (size_t i = imin; i < imax; ++i) {
    MappedRange mr = map[i];
    ClipMappedRangeOriginal(query_range, &mr);
    if (mr.length + mr.injected > 0)
      temp_map.push_back(mr);
  }

  // If there are no intersecting ranges then the query range has been removed
  // from the image in question.
  if (temp_map.empty())
    return;

  // Sort based on transformed addresses.
  std::sort(temp_map.begin(), temp_map.end(), MappedRangeMappedLess);

  // Zero-length queries can't actually be merged. We simply output the set of
  // unique RVAs that correspond to the query RVA.
  if (original_range.length == 0) {
    mapped_ranges->push_back(AddressRange(temp_map[0].rva_transformed, 0));
    for (size_t i = 1; i < temp_map.size(); ++i) {
      if (temp_map[i].rva_transformed > mapped_ranges->back().rva)
        mapped_ranges->push_back(AddressRange(temp_map[i].rva_transformed, 0));
    }
    return;
  }

  // Merge any ranges that are consecutive in the mapped image. We merge over
  // injected content if it makes ranges contiguous, but we ignore any injected
  // content at the tail end of a range. This allows us to detect symbols that
  // have been lengthened by injecting content in the middle. However, it
  // misses the case where content has been injected at the head or the tail.
  // The problem is that it doesn't know whether to attribute it to the
  // preceding or following symbol. It is up to the author of the transform to
  // output explicit OMAP info in these cases to ensure full coverage of the
  // transformed address space.
  DWORD rva_begin = temp_map[0].rva_transformed;
  DWORD rva_cur_content = rva_begin + temp_map[0].length;
  DWORD rva_cur_injected = rva_cur_content + temp_map[0].injected;
  for (size_t i = 1; i < temp_map.size(); ++i) {
    if (rva_cur_injected < temp_map[i].rva_transformed) {
      // This marks the end of a continuous range in the image. Output the
      // current range and start a new one.
      if (rva_begin < rva_cur_content) {
        mapped_ranges->push_back(
            AddressRange(rva_begin, rva_cur_content - rva_begin));
      }
      rva_begin = temp_map[i].rva_transformed;
    }

    rva_cur_content = temp_map[i].rva_transformed + temp_map[i].length;
    rva_cur_injected = rva_cur_content + temp_map[i].injected;
  }

  // Output the range in progress.
  if (rva_begin < rva_cur_content) {
    mapped_ranges->push_back(
        AddressRange(rva_begin, rva_cur_content - rva_begin));
  }

  return;
}

}  // namespace google_breakpad