PolygonCalculus.cc 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
#include "PolygonCalculus.h"
#include "PlanimetryCalculus.h"
#include "Wima/OptimisationTools.h"

#include <QVector3D>

#include <functional>

namespace PolygonCalculus {
    namespace  {
        bool isReflexVertex(const QPolygonF& polygon, const QPointF  *vertex) {
            // Original Code from SurveyComplexItem::_VertexIsReflex()
            auto vertexBefore = vertex == polygon.begin() ? polygon.end() - 1 : vertex - 1;
            auto vertexAfter = vertex == polygon.end() - 1 ? polygon.begin() : vertex + 1;
            auto area = ( ((vertex->x() - vertexBefore->x())*(vertexAfter->y() - vertexBefore->y()))
                         -((vertexAfter->x() - vertexBefore->x())*(vertex->y() - vertexBefore->y())));
            return area > 0;
        }

    } // end anonymous namespace

    /*!
     * \fn bool containsPath(QPolygonF polygon, const QPointF &c1, const QPointF &c2)
     * Returns true if the shortest path between the two coordinates is not fully inside the \a area.
     *
     * \sa QPointF, QPolygonF
     */
    bool containsPath(QPolygonF polygon, const QPointF &c1, const QPointF &c2)
    {

        if ( !polygon.isEmpty()) {
            if (   !polygon.containsPoint(c1, Qt::FillRule::OddEvenFill)
                || !polygon.containsPoint(c2, Qt::FillRule::OddEvenFill))
                return false;

            QLineF line(c1, c2);
            if (PlanimetryCalculus::intersectsFast(polygon, line))
                return false;
            return true;
        } else {
            return false;
        }
    }

    /*!
     * \fn int closestVertexIndex(const QPolygonF &polygon, const QPointF &coordinate)
     * Returns the vertex index of \a polygon which has the least distance to \a coordinate.
     *
     * \sa QPointF, QPolygonF
     */
    int closestVertexIndex(const QPolygonF &polygon, const QPointF &coordinate)
    {
        if (polygon.size() == 0) {
            qWarning("Path is empty!");
            return -1;
        }else if (polygon.size() == 1) {
            return 0;
        }else {
            int index = 0; // the index of the closest vertex
            double min_dist = PlanimetryCalculus::distance(coordinate, polygon[index]);
            for(int i = 1; i < polygon.size(); i++){
                double dist = PlanimetryCalculus::distance(coordinate, polygon[i]);
                if (dist < min_dist){
                    min_dist = dist;
                    index = i;
                }
            }
            return index;
        }
    }

    /*!auto distance
     * \fn  QPointF closestVertex(const QPolygonF &polygon, const QPointF &coordinate);
     *  Returns the vertex of \a polygon with the least distance to \a coordinate.
     *
     * \sa QPointF, QPolygonF
     */
    QPointF closestVertex(const QPolygonF &polygon, const QPointF &coordinate)
    {
        int index = closestVertexIndex(polygon, coordinate);
        if (index >=0 ) {
            return polygon[index];
        } else {
            return QPointF();
        }
    }

    /*!
     * \fn int nextPolygonIndex(int pathsize, int index)
     * Returns the index of the next vertex (of a polygon), which is \a index + 1 if \a index is smaller than \c {\a pathsize - 1},
     * or 0 if \a index equals \c {\a pathsize - 1}, or -1 if the \a index is out of bounds.
     * \note \a pathsize is usually obtained by invoking polygon.size()
     */
    int nextVertexIndex(int pathsize, int index)
    {
        if (index >= 0 && index < pathsize-1) {
            return index + 1;
        } else if (index == pathsize-1) {
            return 0;
        } else {
            qWarning("nextPolygonIndex(): Index out of bounds! index:count = %i:%i", index, pathsize);
            return -1;
        }
    }

    /*!
     * \fn int previousPolygonIndex(int pathsize, int index)
     * Returns the index of the previous vertex (of a polygon), which is \a index - 1 if \a index is larger 0,
     * or \c {\a pathsize - 1} if \a index equals 0, or -1 if the \a index is out of bounds.
     * \note pathsize is usually obtained by invoking polygon.size()
     */
    int previousVertexIndex(int pathsize, int index)
    {
        if (index > 0 && index <pathsize) {
            return index - 1;
        } else if (index == 0) {
            return pathsize-1;
        } else {
            qWarning("previousVertexIndex(): Index out of bounds! index:count = %i:%i", index, pathsize);
            return -1;
        }
    }

    /*!
     * \fn JoinPolygonError joinPolygon(QPolygonF polygon1, QPolygonF polygon2, QPolygonF &joinedPolygon);
     * Joins \a polygon1 and \a polygon2 such that a \l {Simple Polygon} is created.
     * Stores the result inside \a joinedArea.
     * Returns \c NotSimplePolygon1 if \a polygon1 isn't a Simple Polygon, \c NotSimplePolygon2 if \a polygon2 isn't a Simple Polygon, \c Disjoind if the polygons are disjoint,
     * \c PathSizeLow if at least one polygon has a size samler than 3, or \c PolygonJoined on success.
     * The algorithm will be able to join the areas, if either their edges intersect with each other,
     * or one area is inside the other.
     * The algorithm assumes that \a joinedPolygon is empty.
     */
    JoinPolygonError join(QPolygonF polygon1, QPolygonF polygon2, QPolygonF &joinedPolygon)
    {
        using namespace PlanimetryCalculus;
        if (polygon1.size() >= 3 && polygon2.size() >= 3) {

            if ( !isSimplePolygon(polygon1) || !isSimplePolygon(polygon2)) {
                return JoinPolygonError::NotSimplePolygon;
            }

            if (polygon1 == polygon2) {
                joinedPolygon = polygon1;
                return JoinPolygonError::PolygonJoined;
            }
            if ( !hasClockwiseWinding(polygon1)) {
                reversePath(polygon1);
            }
            if ( !hasClockwiseWinding(polygon2)) {
                reversePath(polygon2);
            }

            const QPolygonF *walkerPoly    = &polygon1; // "walk" on this polygon towards higher indices
            const QPolygonF *crossPoly     = &polygon2; // check for crossings with this polygon while "walking"
                                                        // and swicht to this polygon on a intersection,
                                                        // continue to walk towards higher indices

            // begin with the first index which is not inside crosspoly, if all Vertices are inside crosspoly return crosspoly
            int startIndex = 0;
            bool crossContainsWalker = true;
            for (int i = 0; i < walkerPoly->size(); i++) {
                if ( !contains(*crossPoly, walkerPoly->at(i)) ) {
                    crossContainsWalker = false;
                    startIndex = i;
                    break;
                }
            }

            if ( crossContainsWalker == true) {
                joinedPolygon.append(*crossPoly);
                return JoinPolygonError::PolygonJoined;
            }
            QPointF currentVertex    = walkerPoly->at(startIndex);
            QPointF startVertex      = currentVertex;
            // possible nextVertex (if no intersection between currentVertex and protoVertex with crossPoly)
            int nextVertexNumber     = nextVertexIndex(walkerPoly->size(), startIndex);
            QPointF protoNextVertex  = walkerPoly->value(nextVertexNumber);
            long counter = 0;
            while (1) {
                //qDebug("nextVertexNumber: %i", nextVertexNumber);
                joinedPolygon.append(currentVertex);

                QLineF walkerPolySegment;
                walkerPolySegment.setP1(currentVertex);
                walkerPolySegment.setP2(protoNextVertex);

                QVector<QPair<int, int>> neighbourList;
                QVector<QPointF> intersectionList;
                //qDebug("IntersectionList.size() on init: %i", intersectionList.size());
                PlanimetryCalculus::intersects(*crossPoly, walkerPolySegment, intersectionList, neighbourList);

                //qDebug("IntersectionList.size(): %i", intersectionList.size());

                if (intersectionList.size() > 0) {
                    int minDistIndex = -1;

                    double minDist = std::numeric_limits<double>::infinity();
                    for (int i = 0; i < intersectionList.size(); i++) {
                        double currentDist = PlanimetryCalculus::distance(currentVertex, intersectionList[i]);

                        if ( minDist > currentDist && !qFuzzyIsNull(distance(currentVertex, intersectionList[i])) ) {
                            minDist         = currentDist;
                            minDistIndex    = i;
                        }
                    }

                    if (minDistIndex != -1){
                        currentVertex                   = intersectionList.value(minDistIndex);
                        QPair<int, int> neighbours      = neighbourList.value(minDistIndex);
                        protoNextVertex                 = crossPoly->value(neighbours.second);
                        nextVertexNumber                 = neighbours.second;

                        // switch walker and cross poly
                        const QPolygonF *temp   = walkerPoly;
                        walkerPoly              = crossPoly;
                        crossPoly               = temp;
                    } else {
                        currentVertex    = walkerPoly->value(nextVertexNumber);
                        nextVertexNumber = nextVertexIndex(walkerPoly->size(), nextVertexNumber);
                        protoNextVertex  = walkerPoly->value(nextVertexNumber);
                    }

                } else {
                    currentVertex    = walkerPoly->value(nextVertexNumber);
                    nextVertexNumber = nextVertexIndex(walkerPoly->size(), nextVertexNumber);
                    protoNextVertex  = walkerPoly->value(nextVertexNumber);
                }

                if (currentVertex == startVertex) {
                    if (polygon1.size() == joinedPolygon.size()) {
                        for (int i = 0; i < polygon1.size(); i++) {
                            if (polygon1[i] != joinedPolygon[i])
                                return PolygonJoined;
                        }
                        return Disjoint;
                    } else {
                        return PolygonJoined;
                    }
                }

                counter++;
                if (counter > 1e5) {
                    qWarning("PolygonCalculus::join(): no successfull termination!");
                    return Error;
                }
            }

        } else {
            return PathSizeLow;
        }
    }

    /*!
     * \fn bool isSimplePolygon(const QPolygonF &polygon);
     * Returns \c true if \a polygon is a \l {Simple Polygon}, \c false else.
     * \note A polygon is a Simple Polygon iff it is not self intersecting.
     */
    bool isSimplePolygon(const QPolygonF &polygon)
    {
        int i = 0;
        if (polygon.size() > 3) {
            // check if any edge of the area (formed by two adjacent vertices) intersects with any other edge of the area
            while(i < polygon.size()-1) {
                double cCIntersectCounter = 0; // corner corner intersection counter
                QPointF refBeginCoordinate = polygon[i];
                QPointF refEndCoordinate = polygon[nextVertexIndex(polygon.size(), i)];
                QLineF refLine;
                refLine.setP1(refBeginCoordinate);
                refLine.setP2(refEndCoordinate);
                int j = nextVertexIndex(polygon.size(), i);
                while(j < polygon.size()) {

                    QPointF intersectionPt;
                    QLineF iteratorLine;
                    iteratorLine.setP1(polygon[j]);
                    iteratorLine.setP2(polygon[nextVertexIndex(polygon.size(), j)]);
                    PlanimetryCalculus::IntersectType intersectType;
                    PlanimetryCalculus::intersects(refLine, iteratorLine, intersectionPt, intersectType);
                    if ( intersectType == PlanimetryCalculus::CornerCornerIntersection) {
                        cCIntersectCounter++;
                        // max two corner corner intersections allowed, a specific coordinate can appear only once in a simple polygon
                    }
                    if ( cCIntersectCounter > 2
                         || intersectType == PlanimetryCalculus::EdgeEdgeIntersection
                         || intersectType == PlanimetryCalculus::EdgeCornerIntersection
                         || intersectType == PlanimetryCalculus::LinesEqual
                         || intersectType == PlanimetryCalculus::Error){
                        return false;
                    }

                    j++;
                }
                i++;
            }
        }
        return true;
    }

    /*!
     * \fn bool hasClockwiseWinding(const QPolygonF &polygon)
     * Returns \c true if \a path has clockwiauto distancese winding, \c false else.
     */
    bool hasClockwiseWinding(const QPolygonF &polygon)
    {
        if (polygon.size() <= 2) {
            return false;
        }

        double sum = 0;
        for (int i=0; i <polygon.size(); i++) {
            QPointF coord1 = polygon[i];
            QPointF coord2 = polygon[nextVertexIndex(polygon.size(), i)];

            sum += (coord2.x() - coord1.x()) * (coord2.y() + coord1.y());
        }

        if (sum < 0.0)
            return false;

        return true;
    }

    /*!
     * \fn void reversePath(QPolygonF &polygon)
     * Reverses the path, i.e. changes the first Vertex with the last, the second with the befor last and so forth.
     */
    void reversePath(QPolygonF &polygon)
    {
        QPolygonF pathReversed;
        for (int i = 0; i < polygon.size(); i++) {
            pathReversed.prepend(polygon[i]);
        }
        polygon.clear();
        polygon.append(pathReversed);
    }

    /*!
     * \fn void offsetPolygon(QPolygonF &polygon, double offset)
     * Offsets a \a polygon by the given \a offset. The algorithm assumes that polygon is a \l {SimplePolygon}.
     */
    void offsetPolygon(QPolygonF &polygon, double offset)
    {
        // Original code from QGCMapPolygon::offset()
        QPolygonF newPolygon;
        if (polygon.size() > 2) {

            // Walk the edges, offsetting by theauto distance specified distance
            QList<QLineF> rgOffsetEdges;
            for (int i = 0; i < polygon.size(); i++) {
                int     nextIndex = nextVertexIndex(polygon.size(), i);
                QLineF  offsetEdge;
                QLineF  originalEdge(polygon[i], polygon[nextIndex]);

                QLineF workerLine = originalEdge;
                workerLine.setLength(offset);
                workerLine.setAngle(workerLine.angle() - 90.0);
                offsetEdge.setP1(workerLine.p2());

                workerLine.setPoints(originalEdge.p2(), originalEdge.p1()); bool             containsPath        (const QPointF &c1, const QPointF &c2, QPolygonF polygon);
                workerLine.setLength(offset);
                workerLine.setAngle(workerLine.angle() + 90.0);
                offsetEdge.setP2(workerLine.p2());

                rgOffsetEdges << offsetEdge;
            }

            // Intersect the offset edges to generate new vertices
            polygon.clear();
            QPointF         newVertex;
            for (int i=0; i<rgOffsetEdges.count(); i++) {
                int prevIndex = previousVertexIndex(rgOffsetEdges.size(), i);
                if (rgOffsetEdges[prevIndex].intersect(rgOffsetEdges[i], &newVertex) == QLineF::NoIntersection) {
                    // FIXME: Better error handling?
                    qWarning("Intersection failed");
                    return;
                }
                polygon.append(newVertex);
            }
        }
    }

    void decomposeToConvex(const QPolygonF &polygon, QList<QPolygonF> &convexPolygons)
    {
        // Original Code SurveyComplexItem::_PolygonDecomposeConvex()
        // this follows "Mark Keil's Algorithm" https://mpen.ca/406/keil
        int decompSize = std::numeric_limits<int>::max();
        if (polygon.size() < 3) return;
        if (polygon.size() == 3) {
            convexPolygons << polygon;
            return;
        }

        QList<QPolygonF> decomposedPolygonsMin{};

        for (const QPointF *vertex = polygon.begin(); vertex != polygon.end(); ++vertex)
        {
            // is vertex reflex?
            bool vertexIsReflex = isReflexVertex(polygon, vertex);

            if (!vertexIsReflex) continue;

            for (const QPointF *vertexOther = polygon.begin(); vertexOther != polygon.end(); ++vertexOther)
            {
                const QPointF *vertexBefore = vertex == polygon.begin() ? polygon.end() - 1 : vertex - 1;
                const QPointF *vertexAfter = vertex == polygon.end() - 1 ? polygon.begin() : vertex + 1;
                if (vertexOther == vertex) continue;
                if (vertexAfter == vertexOther) continue;
                if (vertexBefore == vertexOther) continue;
                bool canSee = containsPath(polygon, *vertex, *vertexOther);
                if (!canSee) continue;

                QPolygonF polyLeft;
                const QPointF *v = vertex;
                bool polyLeftContainsReflex = false;
                while ( v != vertexOther) {
                    if (v != vertex && isReflexVertex(polygon, v)) {
                        polyLeftContainsReflex = true;
                    }
                    polyLeft << *v;
                    ++v;
                    if (v == polygon.end()) v = polygon.begin();
                }
                polyLeft << *vertexOther;
                bool polyLeftValid = !(polyLeftContainsReflex && polyLeft.size() == 3);

                QPolygonF polyRight;
                v = vertexOther;
                bool polyRightContainsReflex = false;
                while ( v != vertex) {
                    if (v != vertex && isReflexVertex(polygon, v)) {
                        polyRightContainsReflex = true;
                    }
                    polyRight << *v;
                    ++v;
                    if (v == polygon.end()) v = polygon.begin();
                }
                polyRight << *vertex;
                auto polyRightValid = !(polyRightContainsReflex && polyRight.size() == 3);

                if (!polyLeftValid || ! polyRightValid) {
    //                decompSize = std::numeric_limits<int>::max();
                    continue;
                }

                // recursion
                QList<QPolygonF> polyLeftDecomposed{};
                decomposeToConvex(polyLeft, polyLeftDecomposed);

                QList<QPolygonF> polyRightDecomposed{};
                decomposeToConvex(polyRight, polyRightDecomposed);

                // compositon
                int subSize = polyLeftDecomposed.size() + polyRightDecomposed.size();
                if (   (polyLeftContainsReflex && polyLeftDecomposed.size() == 1)
                    || (polyRightContainsReflex && polyRightDecomposed.size() == 1))
                {
                    // don't accept polygons that contian reflex vertices and were not split
                    subSize = std::numeric_limits<int>::max();
                }
                if (subSize < decompSize) {
                    decompSize = subSize;
                    decomposedPolygonsMin = polyLeftDecomposed + polyRightDecomposed;
                }
            }
        }

        // assemble output
        if (decomposedPolygonsMin.size() > 0) {
            convexPolygons << decomposedPolygonsMin;
        } else {
            convexPolygons << polygon;
        }

        return;
    }

    bool shortestPath(const QPolygonF &polygon,const QPointF &startVertex, const QPointF &endVertex, QVector<QPointF> &shortestPath)
    {
        using namespace PlanimetryCalculus;
        QPolygonF bigPolygon(polygon);
        offsetPolygon(bigPolygon, 0.5); // solves numerical errors
        if (    bigPolygon.containsPoint(startVertex, Qt::FillRule::OddEvenFill)
             && bigPolygon.containsPoint(endVertex, Qt::FillRule::OddEvenFill)) {

            QVector<QPointF> elementList;
            elementList.append(startVertex);
            elementList.append(endVertex);
            for (auto vertex : polygon)  elementList.append(vertex);
            const int listSize = elementList.size();


            std::function<double(const int, const int)> distanceDij = [bigPolygon, elementList](const int ind1,  const int ind2) -> double {
                QPointF p1 = elementList[ind1];
                QPointF p2 = elementList[ind2];
                double dist = std::numeric_limits<double>::infinity();
                if (containsPathFast(bigPolygon, p1, p2)){ // containsPathFast can be used since all points are inside bigPolygon
                    double dx = p1.x()-p2.x();
                    double dy = p1.y()-p2.y();
                    dist =  sqrt((dx*dx)+(dy*dy));
                }

                return dist;
            };

            QVector<int> shortestPathIndex;
            bool retVal = OptimisationTools::dijkstraAlgorithm(listSize, 0, 1, shortestPathIndex, distanceDij);
            for (auto index : shortestPathIndex) shortestPath.append(elementList[index]);
            return retVal;
        } else {
            return false;
        }
    }

    QVector3DList toQVector3DList(const QPolygonF &polygon)
    {
        QVector3DList list;
        for ( auto vertex : polygon )
            list.append(QVector3D(vertex));

        return list;
    }

    QPolygonF toQPolygonF(const QPointFList &listF)
    {
        QPolygonF polygon;
        for ( auto vertex : listF )
            polygon.append(vertex);

        return polygon;
    }

    QPointFList toQPointFList(const QPolygonF &polygon)
    {
        QPointFList listF;
        for ( auto vertex : polygon )
            listF.append(vertex);

        return listF;
    }

    void reversePath(QPointFList &path)
    {
        QPointFList pathReversed;
        for ( auto element : path) {
            pathReversed.prepend(element);
        }
        path = pathReversed;
    }

    void reversePath(QPointFVector &path)
    {
        QPointFVector pathReversed;
        for ( auto element : path) {
            pathReversed.prepend(element);
        }
        path = pathReversed;
    }



    bool containsPathFast(QPolygonF polygon, const QPointF &c1, const QPointF &c2)
    {

        if ( !polygon.isEmpty()) {
            QLineF line(c1, c2);
            if (PlanimetryCalculus::intersectsFast(polygon, line))
                return false;
            return true;
        } else {
            return false;
        }
    }



} // end PolygonCalculus namespace