adjustable_priority_queue.h 5.86 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef OR_TOOLS_BASE_ADJUSTABLE_PRIORITY_QUEUE_H_
#define OR_TOOLS_BASE_ADJUSTABLE_PRIORITY_QUEUE_H_

#include <stddef.h>

#include <functional>
#include <list>
#include <vector>

#include "ortools/base/basictypes.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"

template <typename T, typename Comparator>
class LowerPriorityThan {
 public:
  explicit LowerPriorityThan(Comparator* compare) : compare_(compare) {}
  bool operator()(T* a, T* b) const { return (*compare_)(*a, *b); }

 private:
  Comparator* compare_;
};

template <typename T, typename Comp = std::less<T> >
class AdjustablePriorityQueue {
 public:
  // The objects references 'c' and 'm' are not required to be alive for the
  // lifetime of this object.
  AdjustablePriorityQueue() {}
  AdjustablePriorityQueue(const Comp& c) : c_(c) {}
  AdjustablePriorityQueue(const AdjustablePriorityQueue&) = delete;
  AdjustablePriorityQueue& operator=(const AdjustablePriorityQueue&) = delete;
  AdjustablePriorityQueue(AdjustablePriorityQueue&&) = default;
  AdjustablePriorityQueue& operator=(AdjustablePriorityQueue&&) = default;

  void Add(T* val) {
    // Extend the size of the vector by one.  We could just use
    // vector<T>::resize(), but maybe T is not default-constructible.
    elems_.push_back(val);
    AdjustUpwards(elems_.size() - 1);
  }

  void Remove(T* val) {
    int end = elems_.size() - 1;
    int i = val->GetHeapIndex();
    if (i == end) {
      elems_.pop_back();
      return;
    }
    elems_[i] = elems_[end];
    elems_[i]->SetHeapIndex(i);
    elems_.pop_back();
    NoteChangedPriority(elems_[i]);
  }

  bool Contains(const T* val) const {
    int i = val->GetHeapIndex();
    return (i >= 0 && i < elems_.size() && elems_[i] == val);
  }

  void NoteChangedPriority(T* val) {
    LowerPriorityThan<T, Comp> lower_priority(&c_);
    int i = val->GetHeapIndex();
    int parent = (i - 1) / 2;
    if (lower_priority(elems_[parent], val)) {
      AdjustUpwards(i);
    } else {
      AdjustDownwards(i);
    }
  }
  // If val ever changes its priority, you need to call this function
  // to notify the pq so it can move it in the heap accordingly.

  T* Top() { return elems_[0]; }

  const T* Top() const { return elems_[0]; }

  void AllTop(std::vector<T*>* topvec) {
    topvec->clear();
    if (Size() == 0) return;
    std::list<int> need_to_check_children;
    need_to_check_children.push_back(0);
    // Implements breadth-first search down tree, stopping whenever
    // there's an element < top
    while (!need_to_check_children.empty()) {
      int ind = need_to_check_children.front();
      need_to_check_children.pop_front();
      topvec->push_back(elems_[ind]);
      int leftchild = 1 + 2 * ind;
      if (leftchild < Size()) {
        if (!LowerPriorityThan<T, Comp>(&c_)(elems_[leftchild], elems_[ind])) {
          need_to_check_children.push_back(leftchild);
        }
        int rightchild = leftchild + 1;
        if (rightchild < Size() &&
            !LowerPriorityThan<T, Comp>(&c_)(elems_[rightchild], elems_[ind])) {
          need_to_check_children.push_back(rightchild);
        }
      }
    }
  }
  // If there are ties for the top, this returns all of them.

  void Pop() { Remove(Top()); }

  int Size() const { return elems_.size(); }

  // Returns the number of elements for which storage has been allocated.
  int Capacity() const { return elems_.capacity(); }

  // Allocates storage for a given number of elements.
  void SetCapacity(size_t c) { elems_.reserve(c); }

  bool IsEmpty() const { return elems_.empty(); }

  void Clear() { elems_.clear(); }

  // CHECKs that the heap is actually a heap (each "parent" of >=
  // priority than its child).
  void CheckValid() {
    for (int i = 0; i < elems_.size(); ++i) {
      int left_child = 1 + 2 * i;
      if (left_child < elems_.size()) {
        CHECK(
            !(LowerPriorityThan<T, Comp>(&c_))(elems_[i], elems_[left_child]));
      }
      int right_child = left_child + 1;
      if (right_child < elems_.size()) {
        CHECK(
            !(LowerPriorityThan<T, Comp>(&c_))(elems_[i], elems_[right_child]));
      }
    }
  }

  // This is for debugging, e.g. the caller can use it to
  // examine the heap for rationality w.r.t. other parts of the
  // program.
  const std::vector<T*>* Raw() const { return &elems_; }

 private:
  void AdjustUpwards(int i) {
    T* const t = elems_[i];
    while (i > 0) {
      const int parent = (i - 1) / 2;
      if (!c_(*elems_[parent], *t)) {
        break;
      }
      elems_[i] = elems_[parent];
      elems_[i]->SetHeapIndex(i);
      i = parent;
    }
    elems_[i] = t;
    t->SetHeapIndex(i);
  }

  void AdjustDownwards(int i) {
    T* const t = elems_[i];
    while (true) {
      const int left_child = 1 + 2 * i;
      if (left_child >= elems_.size()) {
        break;
      }
      const int right_child = left_child + 1;
      const int next_i = (right_child < elems_.size() &&
                          c_(*elems_[left_child], *elems_[right_child]))
                             ? right_child
                             : left_child;
      if (!c_(*t, *elems_[next_i])) {
        break;
      }
      elems_[i] = elems_[next_i];
      elems_[i]->SetHeapIndex(i);
      i = next_i;
    }
    elems_[i] = t;
    t->SetHeapIndex(i);
  }

  Comp c_;
  std::vector<T*> elems_;
};

#endif  // OR_TOOLS_BASE_ADJUSTABLE_PRIORITY_QUEUE_H_