find_graph_symmetries.h 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This class solves the graph automorphism problem
// (https://en.wikipedia.org/wiki/Graph_automorphism), a variant of the famous
// graph isomorphism problem (https://en.wikipedia.org/wiki/Graph_isomorphism).
//
// The algorithm is largely based on the following article, published in 2008:
// "Faster Symmetry Discovery using Sparsity of Symmetries" by Darga, Sakallah
// and Markov. http://web.eecs.umich.edu/~imarkov/pubs/conf/dac08-sym.pdf.
//
// See the comments on the class below for more details.

#ifndef OR_TOOLS_ALGORITHMS_FIND_GRAPH_SYMMETRIES_H_
#define OR_TOOLS_ALGORITHMS_FIND_GRAPH_SYMMETRIES_H_

#include <memory>
#include <vector>

#include "absl/status/status.h"
#include "absl/time/time.h"
#include "ortools/algorithms/dynamic_partition.h"
#include "ortools/algorithms/dynamic_permutation.h"
#include "ortools/graph/graph.h"
#include "ortools/graph/iterators.h"
#include "ortools/util/stats.h"
#include "ortools/util/time_limit.h"

namespace operations_research {

class SparsePermutation;

class GraphSymmetryFinder {
 public:
  typedef ::util::StaticGraph<> Graph;

  // If the Graph passed to the GraphSymmetryFinder is undirected, i.e.
  // for every arc a->b, b->a is also present, then you should set
  // "is_undirected" to true.
  // This will, in effect, DCHECK() that the graph is indeed undirected,
  // and bypass the need for reverse adjacency lists.
  //
  // If you don't know this in advance, you may use GraphIsSymmetric() from
  // ortools/graph/util.h.
  //
  // "graph" must not have multi-arcs.
  // TODO(user): support multi-arcs.
  GraphSymmetryFinder(const Graph& graph, bool is_undirected);

  // Whether the given permutation is an automorphism of the graph given at
  // construction. This costs O(sum(degree(x))) (the sum is over all nodes x
  // that are displaced by the permutation).
  bool IsGraphAutomorphism(const DynamicPermutation& permutation) const;

  // Find a set of generators of the automorphism subgroup of the graph that
  // respects the given node equivalence classes. The generators are themselves
  // permutations of the nodes: see http://en.wikipedia.org/wiki/Automorphism.
  // These permutations may only map a node onto a node of its equivalence
  // class: two nodes i and j are in the same equivalence class iff
  // node_equivalence_classes_io[i] == node_equivalence_classes_io[j];
  //
  // This set of generators is not necessarily the smallest possible (neither in
  // the number of generators, nor in the size of these generators), but it is
  // minimal in that no generator can be removed while keeping the generated
  // group intact.
  // TODO(user): verify the minimality in unit tests.
  //
  // Note that if "generators" is empty, then the graph has no symmetry: the
  // only automorphism is the identity.
  //
  // The equivalence classes are actually an input/output: they are refined
  // according to all asymmetries found. In the end, n1 and n2 will be
  // considered equivalent (i.e. node_equivalence_classes_io[n1] ==
  // node_equivalence_classes_io[n2]) if and only if there exists a
  // permutation of nodes that:
  // - keeps the graph invariant
  // - maps n1 onto n2
  // - maps each node to a node of its original equivalence class.
  //
  // This method also outputs the size of the automorphism group, expressed as
  // a factorized product of integers (note that the size itself may be as
  // large as N!).
  //
  // DEADLINE AND PARTIAL COMPLETION:
  // If the deadline passed as argument is reached, this method will return
  // quickly (within a few milliseconds). The outputs may be partially filled:
  // - Each element of "generators", if non-empty, will be a valid permutation.
  // - "node_equivalence_classes_io" will contain the equivalence classes
  //   corresponding to the orbits under all the generators in "generators".
  // - "factorized_automorphism_group_size" will also be incomplete, and
  //   partially valid: its last element may be undervalued. But all prior
  //   elements are valid factors of the automorphism group size.
  absl::Status FindSymmetries(
      double time_limit_seconds, std::vector<int>* node_equivalence_classes_io,
      std::vector<std::unique_ptr<SparsePermutation> >* generators,
      std::vector<int>* factorized_automorphism_group_size);

  // Fully refine the partition of nodes, using the graph as symmetry breaker.
  // This means applying the following steps on each part P of the partition:
  // - Compute the aggregated in-degree of all nodes of the graph, only looking
  //   at arcs originating from nodes in P.
  // - For each in-degree d=1...max_in_degree, refine the partition by the set
  //   of nodes with in-degree d.
  // And recursively applying it on all new or modified parts.
  //
  // In our use cases, we may call this in a scenario where the partition was
  // already partially refined on all parts #0...#K, then you should set
  // "first_unrefined_part_index" to K+1.
  void RecursivelyRefinePartitionByAdjacency(int first_unrefined_part_index,
                                             DynamicPartition* partition);

  // **** Methods below are public FOR TESTING ONLY. ****

  // Special wrapper of the above method: assuming that partition is already
  // fully refined, further refine it by {node}, and propagate by adjacency.
  // Also, optionally collect all the new singletons of the partition in
  // "new_singletons", sorted by their part number in the partition.
  void DistinguishNodeInPartition(int node, DynamicPartition* partition,
                                  std::vector<int>* new_singletons_or_null);

 private:
  const Graph& graph_;

  inline int NumNodes() const { return graph_.num_nodes(); }

  // If the graph isn't symmetric, then we store the reverse adjacency lists
  // here: for each i in 0..NumNodes()-1, the list of nodes that have an
  // outgoing arc to i is stored (sorted by node) in:
  //   flattened_reverse_adj_lists_[reverse_adj_list_index_[i] ...
  //                                reverse_adj_list_index_[i + 1]]
  // and can be iterated on easily with:
  //   for (const int tail : TailsOfIncomingArcsTo(node)) ...
  //
  // If the graph was specified as symmetric upon construction, both these
  // vectors are empty, and TailsOfIncomingArcsTo() crashes.
  std::vector<int> flattened_reverse_adj_lists_;
  std::vector<int> reverse_adj_list_index_;
  util::BeginEndWrapper<std::vector<int>::const_iterator> TailsOfIncomingArcsTo(
      int node) const;

  // Deadline management. Populated upon FindSymmetries().
  mutable std::unique_ptr<TimeLimit> time_limit_;

  // Internal search code used in FindSymmetries(), split out for readability:
  // find one permutation (if it exists) that maps root_node to root_image_node
  // and such that the image of "base_partition" by that permutation is equal to
  // the "image_partition". If no such permutation exists, returns nullptr.
  //
  // "generators_found_so_far" and "permutations_displacing_node" are used for
  // pruning in the search. The former is just the "generators" vector of
  // FindGraphSymmetries(), with the permutations found so far; and the latter
  // is an inverted index from each node to all permutations (that we found)
  // that displace it.
  std::unique_ptr<SparsePermutation> FindOneSuitablePermutation(
      int root_node, int root_image_node, DynamicPartition* base_partition,
      DynamicPartition* image_partition,
      const std::vector<std::unique_ptr<SparsePermutation> >&
          generators_found_so_far,
      const std::vector<std::vector<int> >& permutations_displacing_node);

  // Data structure used by FindOneSuitablePermutation(). See the .cc
  struct SearchState {
    int base_node;

    // We're tentatively mapping "base_node" to some image node. At first, we
    // just pick a single candidate: we fill "first_image_node". If this
    // candidate doesn't work out, we'll select all other candidates in the same
    // image part, prune them by the symmetries we found already, and put them
    // in "remaining_pruned_image_nodes" (and set "first_image_node" to -1).
    int first_image_node;
    std::vector<int> remaining_pruned_image_nodes;

    int num_parts_before_trying_to_map_base_node;

    // Only parts that are at or beyond this index, or their parent parts, may
    // be mismatching between the base and the image partitions.
    int min_potential_mismatching_part_index;

    SearchState(int bn, int in, int np, int mi)
        : base_node(bn),
          first_image_node(in),
          num_parts_before_trying_to_map_base_node(np),
          min_potential_mismatching_part_index(mi) {}

    std::string DebugString() const;
  };
  std::vector<SearchState> search_states_;

  // Subroutine of FindOneSuitablePermutation(), split out for modularity:
  // With the partial candidate mapping given by "base_partition",
  // "image_partition" and "current_permutation_candidate", determine whether
  // we have a full match (eg. the permutation is a valid candidate).
  // If so, simply return true. If not, return false but also fill
  // "next_base_node" and "next_image_node" with what should be the next mapping
  // decision.
  //
  // This also uses and updates "min_potential_mismatching_part_index_io"
  // to incrementally search for mismatching parts along the partitions.
  //
  // Note(user): there may be false positives, i.e. this method may return true
  // even if the partitions aren't actually a full match, because it uses
  // fingerprints to compare part. This should almost never happen.
  bool ConfirmFullMatchOrFindNextMappingDecision(
      const DynamicPartition& base_partition,
      const DynamicPartition& image_partition,
      const DynamicPermutation& current_permutation_candidate,
      int* min_potential_mismatching_part_index_io, int* next_base_node,
      int* next_image_node) const;

  // Subroutine of FindOneSuitablePermutation(), split out for modularity:
  // Keep only one node of "nodes" per orbit, where the orbits are described
  // by a subset of "all_permutations": the ones with indices in
  // "permutation_indices" and that are compatible with "partition".
  // For each orbit, keep the first node that appears in "nodes".
  void PruneOrbitsUnderPermutationsCompatibleWithPartition(
      const DynamicPartition& partition,
      const std::vector<std::unique_ptr<SparsePermutation> >& all_permutations,
      const std::vector<int>& permutation_indices, std::vector<int>* nodes);

  // Temporary objects used by some of the class methods, and owned by the
  // class to avoid (costly) re-allocation. Their resting states are described
  // in the side comments; with N = NumNodes().
  DynamicPermutation tmp_dynamic_permutation_;            // Identity(N)
  mutable std::vector<bool> tmp_node_mask_;               // [0..N-1] = false
  std::vector<int> tmp_degree_;                           // [0..N-1] = 0.
  std::vector<int> tmp_stack_;                            // Empty.
  std::vector<std::vector<int> > tmp_nodes_with_degree_;  // [0..N-1] = [].
  MergingPartition tmp_partition_;                        // Reset(N).
  std::vector<const SparsePermutation*> tmp_compatible_permutations_;  // Empty.

  // Internal statistics, used for performance tuning and debugging.
  struct Stats : public StatsGroup {
    Stats()
        : StatsGroup("GraphSymmetryFinder"),
          initialization_time("a Initialization", this),
          initialization_refine_time("b  ┗╸Refine", this),
          invariant_dive_time("c Invariant Dive", this),
          main_search_time("d Main Search", this),
          invariant_unroll_time("e  ┣╸Dive unroll", this),
          permutation_output_time("f  ┣╸Permutation output", this),
          search_time("g  ┗╸FindOneSuitablePermutation()", this),
          search_time_fail("h    ┣╸Fail", this),
          search_time_success("i    ┣╸Success", this),
          initial_search_refine_time("j    ┣╸Initial refine", this),
          search_refine_time("k    ┣╸Further refines", this),
          quick_compatibility_time("l    ┣╸Compatibility checks", this),
          quick_compatibility_fail_time("m    ┃ ┣╸Fail", this),
          quick_compatibility_success_time("n    ┃ ┗╸Success", this),
          dynamic_permutation_refinement_time(
              "o    ┣╸Dynamic permutation refinement", this),
          map_election_std_time(
              "p    ┣╸Mapping election / full match detection", this),
          map_election_std_mapping_time("q    ┃ ┣╸Mapping elected", this),
          map_election_std_full_match_time("r    ┃ ┗╸Full Match", this),
          automorphism_test_time("s    ┣╸[Upon full match] Automorphism check",
                                 this),
          automorphism_test_fail_time("t    ┃ ┣╸Fail", this),
          automorphism_test_success_time("u    ┃ ┗╸Success", this),
          search_finalize_time("v    ┣╸[Upon auto success] Finalization", this),
          dynamic_permutation_undo_time(
              "w    ┣╸[Upon auto fail, full] Dynamic permutation undo", this),
          map_reelection_time(
              "x    ┣╸[Upon auto fail, partial] Mapping re-election", this),
          non_singleton_search_time("y    ┃ ┗╸Non-singleton search", this),
          backtracking_time("z    ┗╸Backtracking", this),
          pruning_time("{      ┗╸Pruning", this),
          search_depth("~ Search Stats: search_depth", this) {}

    TimeDistribution initialization_time;
    TimeDistribution initialization_refine_time;
    TimeDistribution invariant_dive_time;
    TimeDistribution main_search_time;
    TimeDistribution invariant_unroll_time;
    TimeDistribution permutation_output_time;
    TimeDistribution search_time;
    TimeDistribution search_time_fail;
    TimeDistribution search_time_success;
    TimeDistribution initial_search_refine_time;
    TimeDistribution search_refine_time;
    TimeDistribution quick_compatibility_time;
    TimeDistribution quick_compatibility_fail_time;
    TimeDistribution quick_compatibility_success_time;
    TimeDistribution dynamic_permutation_refinement_time;
    TimeDistribution map_election_std_time;
    TimeDistribution map_election_std_mapping_time;
    TimeDistribution map_election_std_full_match_time;
    TimeDistribution automorphism_test_time;
    TimeDistribution automorphism_test_fail_time;
    TimeDistribution automorphism_test_success_time;
    TimeDistribution search_finalize_time;
    TimeDistribution dynamic_permutation_undo_time;
    TimeDistribution map_reelection_time;
    TimeDistribution non_singleton_search_time;
    TimeDistribution backtracking_time;
    TimeDistribution pruning_time;

    IntegerDistribution search_depth;
  };
  mutable Stats stats_;
};

}  // namespace operations_research

#endif  // OR_TOOLS_ALGORITHMS_FIND_GRAPH_SYMMETRIES_H_